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The central theme of this thesis is multimodeling. It is concerned

with modeling and control strategy interaction in a multimodel context.

Realistic situations are studied, which allow the decision makers to use

M different simplified models of the system. Three different approaches to

multimodeling are examined. Firstly, within the framework of multiparameter

singular perturbations, we demonstrate the well-posedness of an a-priori

5 I selected multimodeling scheme, for a class of Nash and team problems. This

establishes, in some sense, the "robustness" of this multimodeling scheme to

a class of solution concepts and information patterns. Secondly, for a class

of weakly-coupled Markov chains, we use a perturbational approach to develop

an efficient algorithm for computing near-optimal incentive policies, which

allows for multimodeling on the part of the decision makers. Finally, for

a class of linear-quadratic problems, we use an input-output approach to

restructure the problem, and choose appropriate admissible strategies which

induce multimodel solutions.
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* ICHAPTER 1

INTRODUCTION

; "The problem of efficient management and control of large scale

systems has been extremely challenging to control engineers. There are

essentially two main issues of concern. The modeling issue is complicated

* due to the large dimension of the system. The crucial problem here is one

of model simplification, i.e., how to obtain a simplified low-order model of

the system which would result in an acceptable control design [2,4,5]. In

large scale systems the model simplification problem is intimately related

to notions of time-scales, weak-coupling and controllability-observability

. :[1-8]. The control design issue is complicated due to the presence of

multiple decision makers having possibly different goals and possessing

*. ' decentralized information. The crucial problem here is to obtain optimal

S- ';multicontroller strategies under nonclassical information patterns and

various cooperative and noncooperative solution concepts [9-13]. In large

scale system design the intricate relationship between the modeling and

strategy design issues introduces additional complexities not encountered

while considering each problem in isolation. This is due to the fact that

i K: many aspects of the system structure are variant under the control actions.

Many cases of ill-posed closed-loop designs based on reduced-order models

f7: have been reported (see for example [45]). The complexities get more

involved when there are multiple decision makers as opposed to a centralized

S:.i decision maker [21-24]. This is because each decision maker's perception

" of the system structure and dynamics may be altered by the actions of the other

decision makers. Hence aLly approach towards developing an efficient design
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methodology must treat the modeling and strategy design issues in a unified

framework.

The central theme of this thesis is multimodeling. It is

concerned with modeling and control strategy interaction in a multimodel

" . context. In large scale system design, it is desirable to allow the decision

makers to use different simplified models of the system [63], due to: i) the

necessity to ease the computational burden associated with simulation,

analysis, and design; ii) the need to obtain a simplified control structure

which is feasible to implement; and iii) a lack of adequately modeled dynamics

of some parts of the system. In this thesis we study realistic situations,

which allow the decision makers to use different models of the system. It is

our purpose to strengthen and extend the multimodeling concept beyond the

framework within which it was originally introduced in [14,151. Towards

this end, we examine three different approaches to multimodeling. Firstly,

we consider situations, when a rational choice of the multimodeling scheme

is made a-priori, based solely on the model structure. To establish the

validity of such a scheme we then examine its impact on the design of control

* strategies. Specifically, our two main issues of concern are: the preser-

vation of stability; and, a minimal loss in performance. Secondly, we

explore multimodeling possibilities in numerical algorithms which compute

near-optimal policies. Finally, we attempt to induce multimodel solutions

by an appropriate re-structuring of the problem, and a suitable choice of

admissible strategies. We hope our study would reveal the interplay between

the structural features of the system like time-scales, weak-coupling,

controllability-observability, and strategy design under nonclassical informa-

tion patterns; and help us to achieve a better understanding of the multi-

modeling concept.
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The concept of multimodel strategies for large scale systems has

been introduced in [14,15] within the framework of multiparameter singular

perturbations. In this framework, a large scale system is viewed as

consisting of a "slow" core coupled to a number of "fast" subsystems. A

multimodel situation results when each decision maker models the dynamics of

one fast subsystem and assumes a certain reduced-order equivalent of the

rest of the system. The design objective of each decision maker is assumed

"-. to be compatible with the multimodel assumptions, i.e., each decision maker is

assumed not to penalize the neglected fast dynamics in his objective

Ufunctional. In [15,16], an attempt was made to interpret this practical multi-

-. model situation as a perturbation problem since the "k-th model simplification"

is achieved by the "k-th parameter perturbation." Under the assumptions that

Nthe fast subsystems were weakly-coupled among themselves and that each
.-. fast subsystem was affected by the control of one decision maker alone, the

* perturbation analysis in [15,16] established sufficient conditions for the

multimodel response to be close to the actual system response. The analysis

served as a basis for a decomposed design approach wherein each decision

' maker had to solve a separate low-order control problem in the fast time-

* scale, and jointly solve a low-order game problem in the slow time-scale.

The two problems were solved independently to form the composite strategies

which were shown to stabilize the overall system for sufficiently small

values of the perturbation parameters, provided each of the low-order

problems had-a stabilizing solution. Furthermore, the multimodel solution

was shown to be the asymptotic limit of the optimal solution, thus establishing

its well-posedness.
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In Chapters 2, 3, and 4, we continue to study the role of time-

scales in multimodel strategy design within the framework of multiparameter

singular perturbations. Specifically, we attempt to establish the validity

of multimodel generation by "k-th parameter perturbation" for classes of

linear deterministic systems and linear stochastic systems under nonclassical

information patterns.

The structural assumptions in [15,16] correspond to practical

situations where the fast subsystems are geographically distinct, each under

the direct influence of one decision maker who interacts with the other

decision makers only through the slow core [3]. But there might be situations

where subsystem characterization by time-scales does not correspond to

geographically distinct areas (in which case the fast subsystems might not be

weakly-coupled); and/or a mutual relocation of controls among the decision

makers might not be possible due to the inherent noncooperative nature of the

problem (in which case each fast subsystem might be controlled by more than

one decision maker). In Chapter 2, we examine the implications of relaxing

the structural assumptions made in [15,16]. The general multiparameter game

problem has been formulated in [17], and the ill-posedness of the limiting

solution has been demonstrated through some examples. This happens because

now the decision makers face game situations in both the fast and slow time-

scales, unlike in [15,16] where they faced a control problem in the fast time-

scale. In Chapter 2, we demonstrate that multimodel generation by "k-th

parameter perturbation" is still well-posed provided each decision maker

solves his problem by the hierarchical reduction scheme of single parameter

games [21]. Unlike the multimodel solution of [15,16], the above procedure
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V does not guarantee stability of the overall system unless the coupling

between the fast subsystems is "limited" though not necessarily "Weak."

In [15,16] only deterministic problems with full state information

for each decision maker were treated. The analysis involved examining the

*: limiting solution of Riccati equations or coupled Riccati equations only. At

-" that stage it was not quite clear whether multimodel generation by "k-th

parameter perturbation" would be well-posed for stochastic problems with

* nonclassical information patterns where the optimal solution may involve

integro-differential equations of no particular standard type. In Chapters 3

-- and 4 we establish the validity of such multimodel generation for a class of

stochastic Nash and team problems. The weak-coupling assumption on the fast

subsystems is retained to focus on aspects of randomness and nonclassical

information patterns.

In Chapter 5 we consider the average-cost-per-stage prcblem for

- finite-state Markov chains with multiple decision makers. The existing

P results on Markov games are few [65], and do not provide us with a proper

framework to study the multimodeling problem directly. For this reason we

-. first obtain fundamental existence results for Nash and Stackelberg solutions

- for cases when each decision maker knows only the current value of the state,

and when the leader also has access to the followers' controls at every

stage. An algorithm is obtained for computing affine incentive strategy for

the leader which helps him achieve his global optimum. The practical use-

fulness of Markovian decision processes has been severely limited due to

the extremely large dimension of most Markov chains. Recent applications in

queueing theory [46,47] and management of hydrodams [41,42] have exhibited

Markov chain models with a "weakly-coupled" structure suitable for

r, i
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perturbational analysis. In Chapter 5, after obtaining the general results,

we consider a class of controlled Markov models consisting of N weakly-

* coupled groups of strongly-interacting states. Each group is under the

authority of a single decision maker having his own performance objective and

the overall system is coordinated by a leader whose objective is to optimize

some global system performance. The problem considered is one where these N

decision makers are in Nash equilibrium among themselves and in Stackelberg

equilibrium with the leader. For the incentive design problem, it is shown

that near-optimal policies can be obtained from multiple reduced-order models.

The basic challenge in multimodeling is to identify the "core"

where there is a strong interaction among all the decision makers and other

low-order subproblems where the interactions are weak. This leads to the

possibility of decentralized strategy design by the decision makers using

several low-order models of the system. Such a decomposition need not be

based on time-scale considerations alone. In large scale systems, the

decision makers observe, in general, different variables through their

individual objective functionals. These observed variables play a crucial

role in the solution of the problem. In Chapter 6, we focus on the role of

the observed variables in nultimodel strategy design. We attempt to identify

the core by examining the observability structure induced by the observation

sets of the decision makers. The system is represented in the observability

decomposition form using the techniques of chained aggregation [8,54,55].

By overlapping appropriately the input structure with the observability

decomposition, we identify a class of admissible strategies, referred to as

Structure-Preserving strategies, which generates multimodel solutions. The

information induced multimodel solutions developed in Chapter 6 are shown

"~ ...............thee.s.aston ineato amn.l h eiinmkr n te
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to admit partial noninteraction among the decision makers under certain

conditions which depend on the information pattern. Applications to the

.- control of large scale interconnected subsystems and multi-area power systems

are also discussed.

The thesis concludes with Chapter 7 where we summarize the results

obtained, outline the main contributions, and indicate directions for future

research.

7-

I..
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CHAPTER 2

MULTIMODEL NASH STRATEGIES FOR MULTIPARAMETER
SINGULARLY PERTURBED SYSTEMS

2.1. Introduction

Multimodel strategies for linear deterministic multiparameter

singularly perturbed systems have been obtained in [15,16] under the assump-

tion that the fast subsystems were weakly-coupled among themselves, and that

each fast subsystem was affected by the control of one decision maker only.

In this chapter we shall consider the general multiparameter game problem

wherein the fast subsystems need not be weakly-coupled and each fast sub-

" system might be controlled by more than one decision maker. This problem

has been formulated in [17], and the ill-posedness of the limiting solution

has been demonstrated through some examples. This happens because now the

decision makers face game situations in both the fast and slow time-scales,

unlike in [15,16] where they faced a control problem in the fast time-scale.

In the sequel we shall demonstrate that multimodel generation by "k-th

parameter perturbation" is still well-posed provided each decision maker

solves his problem by the hierarchical reduction scheme of single parameter

games [21].

In Section 2.2 the problem is formulated and the exact solution is

given. In Section 2.3 a procedure is outlined to obtain decentralized

strategies from multimodel solutions. In Section 2.4, well-posedness of

the multimodel solution is established; and finally in Section 2.5, the

important conclusions drawn from the results of this chapter are summarized.
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* 2.2. Problem Formulation

Consider the following linear system controlled by two decision

,- makers

2 2
.A x+ E A z + E B u; x(O)-x (2.1a)

o i-l 0 i-ol i o

e A x+A z +A +B u+B u; z (0) -Z (2.1b)

i i io ii i ijj +iiui ijji Li ai

i,j 1,2; i#j

dim x=n dim zimni, dim uimi, i= 1,2. The small singular perturbation

parameters represent small time-constants, inertias, masses etc. We

consider the case when

lm - C M (2.2)
e 2 2

for some positive constants m and M. Thus the set H to which we restrict

the possible values of £ is a sector in R2. The matrices Aii are assumed to

be nonsingular. The cost functionals of the two decision makers are
I.o

= f(xQ'x+zi'Qizi+u iR'ui u'Rijuj)dt; iJ - 1,2; i#j. (2.3)

The usual definiteness assumptions are made on Q oil Qii' .Rii and Rij.

Notice that the i-th decision maker (DMi) penalizes only zi in his costIi

functional, but not z This is because his simplified model would neglect

C z under the multimodel situation. The decision makers select (ulU*) such

that

L .i(u.,u ) : (u U*) for all admissible u i,ji1,2; iij. (2.4)

The inequalities (2.4) define the Nash equilibrium.
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The system model (2.1) is of interest in several cases. There

might be situations where subsystem characterization by time-scales does

not correspond to geographically distinct areas (in which case the fast

subsystems might not be weakly-coupled); and/or a mutual relocation of

controls among decision makers might not be possible due to the inherent non-

cooperative nature of the problem.

The ill-posed nature of the usual order reduction method for the

problem (2.1)-(2.4) was demonstrated in [17] through some examples. This is

to be expected from past results on single parameter games [21-24], since

now the decision makers face game situations in both the fast and slow time-

scales, unlike in [15,16], when they had to solve only a control problem at

the fast subsystem level. This apparently minor modification in the situation

destroys the complete decoupling between the two low-order problems, and

forces one to look for noncausal reduced-order models which would yield well-

posed solutions.

The definitions of the various matrices that appear in the following

analysis are given in Appendix A. Restricting the control strategies to be

linear functions of the state, the optimal solution to (2.1)-(2.4) is given

by [11]

u* -RiBiKix; i - [x' zi zp (2.5)

where K is a stabilizing solution of the coupled Riccati equations,

Qi+KiA+A Ki KiSiKi KiSj Kj jS jK i+ Kj 0

i,j 1,2; i~j. (2.6)
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Notice that since A and B are functions of e,, Ki is also a function of e,.ii
"" In general even for low-order problems the presence of e causes numerical

"stiffness" in (2.6). The optimal cost of each player is given by

J* 1(O 'Kie:i ; 11,2. (2.7)
1 2

2.3. Multimodel Strategy Design

The notation ()(i) in the following formulation refers to the

quantities associated with DMi's simplified problem. DMi arrives at his

simplified model by neglecting the jth fast subsystem, i.e., by setting

0 in (2.1). This gives

Z~ " A x +A z i+B u 1 +B u~i) (2.8)jo iii jii iii

Substituting (2.8) in (2.1) for z results in DMi's simplified model

ic(i) AM Aixi) ) (i) +(i AI W M+B M+B ) (i) . xCi) ()x (.a
00 oi i oi i oj j

.- i i Ao x +Aj, zi  + B, , + Bi  uj z 1 (0) z Zio. (2.9b)

The cost functionals of the two DMs as viewed by DMi are obtained by sub-

stituting (2.8) in (2.3)

j W (XM Q iM + z M Q1 Z~)u 1 i M + MI )dt

j~i) 2 o/=. I(x(1)'()° Q 1 x~1 ) + z± )'_i) + 2x1'() )+ 2x(i) '5(i) ( C)
0 =-x i iJ zi "-i ij u

-1 2i 1 x1 u. 1<ju.
J 20( oj x izi +2 I x Sj

L+ 2xc± UP(i) W iW + 2 z MI) Ti)U~±) + 2z~ 1 , T M~ u Mi + u~i) I R M uM)
j jji i ii .J

"" (d)_i M i M (i), (1) (i)
•-i,,+ Ul Rj + 2u Pj U )dt. (2.10)

, ii
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* We propose to solve the game (2.9)-(2.1O)by the hierarchical reduction scheme

of [21] which transfers fast game information to a modified slow game.

The fast subsystem is derived by assuming that the slow variables

* are constant during the fast transients,

Ci W W M ) Ci) Mi 1(i)A z i + B iu~ + B U , z (0) z (0). (2.11)
i if ii Zjf ii if ij jf if(O io i

The associated cost functionals are

if 2 i f (z iizif uif ii if jf jj if~d
0

if2 i f Q 1 Zif+ Zif Ti if+ if j Ujf

* . u~i'~(i) i) M Mi) M IMu(i+2uMi)PC± W i)+jf Rjj uj u, jf Ui f +2jf jj ijf )dt (2.12)

whee C) i) - i) MCi
weezif z.i -z and z i is found from (2.18).

The linear closed-loop Nash strategies for (2.1l)-(2.12) are given

* by

1C) 1 UP ( 2(i) mm.M~i) z Wi 21a
if i i if*if if if

(i) (i)Y1  (i)'+ i'K( i) W M ~l(i)' Mi Mi
jf ii (T ii if ji ii ii if zif

(i) (2.13b)
jf Zif

where X:M and KM are stabilizing solutions of
if if

MK(iAi) M M Wi .iB iM iW M(i)'B(i)'Ki M C i)' M
Q if iji + Aii Kif -if Bij if Mf iB if .f iR

if ii if -(21a
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MK 1 M~ 1 M ~ (i)i - MM i) (:L M T 1 ~
jj+jf ii Aii if jEKf ii +i I.if if ii j f +T

~~~~i +)(Mi)MiR)M) W W M2.4M
if R ii if ijf Rjj jf 0.(.l

- Next we make use of the fast controls (2.13) and substitute the following for

Ci) M4
UMand u'' in (2.9) and (2.10),

u _ i) (i)W Ci) + Ci)(21a
-,~ ~ U1  if zi +uC.1

Ci) -M"~i) W~i +2.5W
ui jf zj U 21b

fl The new system and cost functionals are given by

i(i) W Mu z() + B U x M (0)inx (2.16a)
00 oi i oi i oj u

10 M A i)+i' z ~ (j U1 3' a()+B()()z0 21b

0 zi Q11 iii i i if ii jfii

M+u, W () Ri uM ()dt (7)

I{ Ioi + i I i j I i

-C ^i)
Nowi we set i-a in(2.17and)ovefo

2 --AiiCA10  zil Uis ii i

Substiuting 2.18) or Ci) in M21a an (217 2 thzlwsbssenI
cost~u fucinl ar btieda

M M -.) -
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xi A Mx W +B('P +u~ )) ()x(.9
s as s is is is is s o

is 2( Qis 2 sai xs Pis is

+ a(') 'R + , R jsuj) + 2u,, P(i)1 j(i) dt (2.20a)
is iii is iss is is

J(' f {x('')x(+2x( )S( u '+2x( )P( u 4)+- R( u-is 2 0s s is is s is is is ijius

Uis R iUis + 2 uj(i)Pjjis(LJdt. (2. 20b)

Notice that the slow subsystem and the associated cost functionals contain

information about the fast game. The linear closed-loop Nash strategy for

(2.19)-(2.20) is given by

a(i) - R7,1[s(i)x(i)+ B(i)' K Mx i)+ P Mi-M ]-M~i xM(21ais ii is 9 s is s i) is is(.2

Uis Rui. C Pi sBis K is jjsui s - is (i (2.21b)

where K and K are stabilizing solutions ofis is

Q KM Ai Mi +i 4AMi IKMi [IKMiB W)+ P WiM Ci ~M UP ([K i)BMi + MIis is~ A 5  as is is is is is is is -is is

+ M iR M M iR ~ 0 (2.22a)
is ujs is is ii is

M(i) UP~i Mi MAiKi r(BiCi) M~i M ' W~ i M -M i)Q +KA + A is iKB +SI KB +s
is iss 0 5 o s is is is isMis isis s

W, W(i RiM M W RiM 0. (2. 22b)
is uis is i s "ii "is

Hence, the composite strategies for the simplified game of Dixi are given by
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u _M-M x M-M
u i)  is -Mif zi

()u - WsM -Mf Wz ; ij = 1 ,2; i#j. (2.23)
* -jjs jf Z

I. The decentralized multimodel strategy which the two decision makers

use on the full system (2.1), as obtained from the two simplified games, is

then given by

. c W MMix_ i
.u~ -MH x-M 1-,2 (2.24)

- u is if zi  ; i'- ,2.

' Remarks:

r "1) The slow and fast subproblems are both game problems, and are

different for both the players. This is in contrast to the weakly-coupled

* problem considered in [15,16] where only the fast subproblems, which were control

problems, were different for the two players; whereas the slow subproblem, which

.r was a game problem, was the same for both the players.

2) The system and cost matrices of the slow subproblems of both

players contain information about their respective fast games, highlighting the

"anticipative" nature of low-order models in multiple decision maker problems.

..:. This is again in contrast to the weakly-coupled case of [15,16] where the fast

and slow subproblems were solved independently.

3) The multimodel solution of [15,16] did guarantee the stability of

the overall system for all e in H, but the multimodel strategy (2.24) obtained

when the fast subsystems are not weakly-coupled does not guarantee stability,

unless the coupling is limited (not necessarily weak). Therefore, the following

L assumption is made:

S.
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Assumption A:

The solutions to the reduced games exist, and when the multimodel

strategy par(i, is applied to the original system (2.1), the closed-loop

system remains asymptotically stable for all e in H.

2.4. Asymptotic Properties of the Multimodel Strategy

In this section, we shall show that the multimodel strategy and the

resulting costs are well-posed in the sense that they tend to the optimal

strategy and costs respectively in the limit as the small parameters c. go to
:3

zero.

The multimodel strategy (2.24) is put in a convenient form as

follows:

c

C Kj1m K o
A ~ -ll (1 A ) 0

EL'1A 02 22)K~ e2(A 2 22 )if 0

+(A12A ) 'Kim] Z2

SRBL_ _J L2.5 J

-11. 12.51

uc (1 2)
- '/ 0 0 x

-C UA A-(2)

-~~ -R 2 l(LA2(225b

...........................................
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where

K -A AiK )K iA i+ {K iB i+P i(K iB i+S i)RlP )}im io if is oi is is js is is is ii jjs

-l 
1

jj iis ii jjs ii if ij if 05

ij ,2; i~j. (2.26)

To avoid unboundedness in the solution of (2.6) as e-**O in H, and taking into

consideration the symmetry of K1, K 2and the special forms of A, B1, B 2, we

seek the solutions K of (2.6) "in the form

K (e) eK (e) e Ci) 100 £101 £2K02 ()

K () eKM(i) e(i)M i)e 1-,. (27
1i£ 1 £1 01  1 11) 1 2 12 ;il2. (27

E021 2 12 2i2

Theorem 2.1: The following relations hold under Assumption A:

K(i)(0) -KMi
00 is

K i(0) -K
oi im

Wi W

K 1 (0) K*ii i

M~~o M -(AA)l 1 +AA)'Kj 1'; i,J-1,2; i~j
* ~-oj 0jjj is jj i

12 - 12 A21 A 1) ' 2f
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where

- =~ lir (-).-,.;.~~~ 1l a u->. m l

Proof: The proof involves substituting (2.27) in (2.6) and taking the limit

as I El + 0. The detailed manipulations are lengthy and are omitted here for

the sake of brevity.

Corollary 2.1: If the multimodel strategies exist, then

• lira (L (O)-K (0)) 0 .:

I CI 40

Proof: The result is an immediate consequence of Theorem 2.1.

c c "
When the multimodel strategy (u ,u2) is applied to (2.1), the

resulting cost is given by

c i (O)'V i= 1,2 (2.28)

where V (e) satisfies the Lyapunov equation
i

Vi(A-SILI-S 2L 2)+ (A-SIL-S 2L2)'Vi+Qi+LiSiLi +L'S L - 0. (2.29)

By Assumption A, V (e) exists and is positive definite for all e in H.
i

Lemma 2.1:

i c J* + 0(IE); 1- 1,2, YE in H.
i i

Proof: Subtracting (2.6) from (2.29) and letting WinVi-Ki, we get

,. W(A-SILI-S2L2) + (A-SILI-S2L2)'Wi + (Ki-Li)I 'S(K -L ),+ (K -L ) 'Si (K -L)

+KjS (K -L )+ (K -L )'SK +K S (L -K )+ (L -K )'SK -0. (2.30)

ii j iJ i i ii i i i J iii

From Corollary 2.1 and Assumptiou, A, we get
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lim W. -0; i=1,2

and hence i J* + 0(Il); i-1,2 Ve in H.

i i

We have proposed that the multimodel strategy (ulU 2) be used as an approxi-

mation of the exact Nash strategy (Ul,U*). It is not clear at this point
1'2

why decision makers, who are interested in a Nash strategy should use the

multimodel strategy. The exact Nash strategy (u*,u*) satisfies inequality

(2.4), which guarantees that neither decision maker can reduce his cost

functional by unilaterally deviating from (u*,u*). Unfortunately, the multi-

h model strategy does not possess this property, and hence it is necessary to

establish its near-equilibrium property [20]. We have shown that the

resulting costs of the multimodel strategy are O(IcH) close to their Nash

equilibrium values. However, closeness of the costs alone is not sufficient.[c
If player-i uses u , player-j solves an optimal control problem in u The

"'J, CI
strategy u must be a near-optimal strategy for this optimal control problem,

IC
otherwise player-i would have no motive for using u. This guarantees that

.- J

the j-th player cannot reduce his cost by more than 0(NI ) if he unilaterally

deviates from (ul,u2). Hence, practically the players have no motive for

cheating. This, however, is not a guarantee against cheating. It is quite
|C

possible that the j-th player deviates from uc and uses another strategy u

, that reduces his cost J no matter how insignificant the reduction is; but in

doing so hurts the other player by causing a substantial increase in Ji" Hence,

for (ulU 2) to qualify as a near-equilibrium strategy pair, it must be true

. that any that results in J1 (u ^  < :j, (u iu j cannot increase JI by more

than 0(ReI). The definition of a near-equilibrium strategy as given in [20]

* 'does not require the existence of a Nash equilibrium strategy. Here we shall

£2.
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show that the proposed multimodel strategy (ulu 2) is not just near-equili-

brium Nash, but being O(1 c) close to (u*,u*), is also asymptotic Nash.
1' 2

Define the set of admissible strategies for player 1, when player 2

uses u , as the set of linear feedback strategies of the form,

u--F(e) - -(F1o(c)x+ Fll()z
+ F 2 (e)z2 ) (2.31)

such that the closed-loop matrix

Ac --(A-BFI-S2L)

is stable for all e in H. To avoid mathematical complications, the feedback

matrices of (2.31) are restricted to be of the form,

S(e)= Fli + 0(010); i= 0,1,2. (2.32)

Denote this set by U1 . The set of admissible strategies for player-2 when
V-player- uses uI is similarly defined and is denoted by U

The following lemma is needed to establish the near-equilibrium

Nash property of the multimodel strategy.

Le,,a 2 .2:

C*

J1 (UrU2 ) -Jl(u,,u2 ) - 0(I EI); u1 6u r  c in H.

Proof: Let

* I. 1

3(u 1 u2 ) W 1 x'(O)T M(O) (2.33)

where T satisfies

T1 (A - BF I F + ( -B BF - 52S 'T1 +Q1 +FL'RIlFl +K2 S1 2K2 -0

(2.34)
and

J(U 1 ,U2 ) - - x()'jM0)(2.35)
|u 2" (P, 0
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~ Kwhere P1 satisfies

P1 A- -S 2 L2 ) + (A - B1F1 - S2 L2 ) 'P1 +Q 1 +Fj'R11 Fj + L2S1 2 L2 -

Subtiacting (2.34) from (2.36) and letting N,= P 1-T 1we get (2.36)

N1 (A - B1 F -S 2 L 2 ) + (A - B1 F -S 2 L)'N + T 1S2 (K 2 -L 2 ) + (K2 YL2 )S 2 T1

- -L (2.37)

From Corollary 2.1, and knowing the stability of (A-B F _ Ei ,w e1 1-S2L2)ri ,w e

rN N1  0

* which proves Leumma 2. 2.

The following two theorems establish the near-equilibrium property of

the multimodel strategy.

Theorem 2.2:

Jj(U 3u j)SJ .(UiIu +00611U); Yu:ET, E in H; i,j-L,2, i Oj

i.e., the multimodel strategy is almost secure against cheating.

Proof: We have

1J1(u2,) -J' 1 (u 1 ,U2) + Jl(ulu.) J( u)+ 1 u, 2  uu~~

Since I I(U LIU 2 ) SJl(ulu 2 ). we get

J1(u2~ £ (u1,w4) + L 2~i4 J 1 u21) + 31 (ul8i4) -J( 1 ~

LFrom Lemma 2.1 and Lemma 2.2, it follows that
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J1 U2,~ £ J(ul~u) + O(IkEI) uU 1  .

This proves the theorem for i-1, j -2. The other case is similar. j
Theorem 2.3:

,~~ c jc. J~~~~i(u4l ) £;J~lu)+~l[)

YujEUj such that J (ULUj) :CJj(UL,Uj) .

YeH H; ij -1,2; 10.j

Proof: We prove for i-2, j-1. The other case is similar. Suppose player-2

uses u. -R B2L2 x; the optimal reaction of player-i is given by

u- -RB'M (2.38)

resulting in

--.. ,* €. 1 ,M

J1 (ul,u2 ) , " x(O)'Mlx(O) (2.39)

where M satisfies

,M(A - SlM l - S2L2 ) + (A - SIM 1 - S2L2 ) 'Ml +QI+MlS1M1 +L2S1 2L2 O.

(2.40)

Subtracting (2.40) from (2.29) for i-1, j-2 and letting (= V1 -M1 we have

(A SL 1 -S 2L2 ) +(A -SiL1 -$2L 2 )' +MS(Ml-L) +LjS 1(L1 -M)= j
~(2.41)

It follows from Theorem 2.2 that :1
J 1 (u,,u 2 ) -J(ulu 2 ) -O(IIcEI) (2.42)

or

lun 4(E) 0 (2.43)
II-11-0

I
.. . . . . . ... *
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I and hence to satisfy (2.41) we should have

ir (L -M )Mo. (2.44)

-- Let u -- F~x, u e U1 be any strategy such that

c- "

J(uuc) - (O)'D l^(O) £ J 1 (ulu2) - x(O)'V 1x(O)

(2.45)

D satisfies the Lyapunov equation

D( - B1F1  $2 L2 ) + (A- B1 1 $2 L2 )'D, +Q, + F[.RKF. 4LS 1 2 L2 -0.

(2.46)

Subtracting (2.40) from (2.46), Ti = D -M satisfies

" -(A B1Fl S2L2 ) + (A - BFl " S 2 L2 ) 't 1+6.0; (2.47)

3 where

61 (R CB'M -F )'R 1 (Rj BIM -Fl) *(2.48)

From (2.45) it follows that

0 x(O)"T (C)x(O) C .(O)'I(E)x(O). (2.49)

Hence, due to (2.43) we get

i Y(- -o (2.50)

and therefore, from (2.47) it follows that

lrn (R 1B'M - F -o0. 0(251)
" : IlCRl-O

Equations (2.44) and (2.51) show that any strategy l satisfying (2.45) must

satisfy

lir (RL BILl - Fl) -0. (2.52)

II16-O

," " ' . . . ' " " " ' .[2" .. . : - ) _ : : ._ . , _ . , . . . . . .
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oJ 2 (uu) 
=~1(0) 'D;(), J2 (u,u2) -x(O) 'V2;(O) • (2.53)

where D2 satisfies the Lyapunov equation

D2(A -B1F1 -S2L2) +(A-B 1F-S 2L2) 'D2 +Q2 +FIR 21F1 + LS 2L2 -O.

,--. (2.54)

Subtracting (2.29) for i-2, j=l from (2.54) and letting T2 D2-V2 we get

Y2A-B F1 -SL) -( -B1 F -5L) +V2Bi(R tB Li -F1 ) + (R1 S'L 1 -F1 'B~V

+2( ( 1 1 22 ( -22' 1 1 R 1'L11' I
(R BIL -F F)'R21 (R t tLi F) +LjBjR 1 1 2 (F1 - SLLl

+ (F1 -RjtBLLQ 'IRiRB'Lj 0O- (2.55)

From (2.52) and knowing the stability of (A-B F - 2L2 it follows that

li Y - 0 (2.56):? 110 !-0

which proves the theorem for 1 -2, j - 1.

By a simple modification, the multimodel strategy (2.24) can be reformulated

as a linear function of the slow state alone. To obtain DMi's modified multi-

model strategy, we substitute (2.21) into (2.18) to give

( B M B) M- )xi (2.57)=-al (aio--il is -ij nJS ) s "-,

Substituting (2.57) in (2.24) for z we obtain,

::: c ,.(i) M(i)2 1,() M (1) (i)_o W' M (2.58) :

u.9 i 'sif -ii BA -B Mis M )]xA uis Ai ii(is ij js .
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IThis can be factorized to put into a convenient form,

. - -R B B/ ( o l

K1 5 K"2 1 (A02 ) 0 0 z

-t (1
+ (A12A2 2 )'K'0

--B,2 -(2.59a)

-eBI B' /E 1)(2 0 0 xu2At -R22[B02 1 2 / 1 B2/21 0 0

-Yl[(A r,.ll)'(2
_ 0 0 1z

[.2. E2 m 0 0 2

-1B I-(2.59b)

where

(A (i) B(i)M(i) B(i)M(i) , (i,j=,2; j.
K - (io ii is ij Js ii if (2.60)

im im(2 .60)

The resulting costwhen the modified multimodel strategy is applied to

(2.1), can be written as

- x(O)'V x(O); 1-1,2 . (2.61)

where V satisfies the Lyapunov equation

Vi(A - 1- S2 2 ) +(A S I S 2 E2)'Vi.+Q1+LiSLj+LjSij~j -o ;
""L (2.62)

±,j - 1,2; ij

If A 1 2 ] is block D-stable [18], then from Assumption A it follows thatFAIA
LA2 1 A22 j

* Kut:-.:.2~.'.*
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(A-Sl 1 -S2 2 ) is stable for all e in H; and hence V exists and is positive

definite-for all 9 in H. Following the methods used earlier, it can be shown

that

J J + O(Ilcll); i- 1,2 Yc in H. (2.63)

The modified multimodel strategy also possesses the near-equilibrium property.

This is true because

Ji(uiuCA) -Ji(uiu ;) "- O(Illl) Yui Ui, e in H; i,j -1,2; ij.

(2.64)

The above fact follows directly from the discussions in [25], and Lemma 2.2.

Hence, together with (2.63) and (2.64) we establish the near-equi-

librium property of the modified multimodel strategy, namely,

JiutUt Yu.3iaJ±u, e in H; i'j -1,2; *.j.

(2.65)

ci c c c C c '

S UJi(u it, uj)r it, ud V ILL) EUJ such that J (u iAu):Cj (uiLAuJA).

Ye in H; i~J -1,2; 10 j (2.66)

Finally, we would like to remark that though the approximate strategies

derived in this paper possess near-equilibrium and asymptotic Nash pro-

perties, the resulting state trajectories are within 0( el) of the optimal

trajectories only outside some boundary-layer.

.
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2.5. Conclusions

In this chapter a procedure has been formulated to obtain decen-

tralized strategies under a multimodel situation. The proposed strategies

fl are near-equilibrium and asymptotic Nash. The subsystem classification was

based on time-scale separation, which allowed the system to be modeled with
p - i multiparameter singular perturbations. The weak-coupling assumption made on

the fast subsystems in [15,16] was removed. This apparently minor modifica-

tion in the model structure changed completely the multimodel solution

' 'procedure. The reduced games for the two players became completely different,

in contrast to the problem in [15,16] where the two reduced games were only

! . partially different, the difference being in the fast control problems; the

-. slow game problems being identical for both the players. Moreover, the multi-

model solution in [15,16] guaranteed the stability of the overall system for

all s in H; but the multimodel solution proposed hereunder the absence of

weak-coupling, failed to guarantee the stability of the overall system unless

the coupling between the fast subsystems is limited (not necessarily weak).

In the case when the boundary-layer system is asymptotically stable for all

e in H (block D-stable), a procedure is given to modify the multimodel

strategies to obtain strategies which are linear functions of the slow state

alone. These modified strategies are also near-equilibrium and asymptotic

,L., . Nash.

K:. -

'F "'
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CHAPTER 3

A MULTIMODEL APPROACH TO STOCHASTIC NASH GAMES

3:1. Introduction

In this chapter we establish the well-posedness of multimodel

generation by "k-th parameter perturbation" for a class of stochastic Nash

games with a prespecified finite-dimensional compensator structure for each

decision maker. The weak-coupling assumption is retained to keep the analysis

simple, and focus on the stochastic aspects of the problem.

In Section 3.2 we formulate the problem and raise some crucial

questions. Section 3.3 demonstrates multimodel generation. In Section 3.4

we establish the weak limit of the fast stochastic variable. In Section 3.5

we solve the slow subproblem and in Section 3.6 we solve the fast subproblems.

In Section 3.7 we examine the limiting behavior of the exact solution and

establish the well-posedness of the multimodel solution. Finally, in Section

3.8, we conclude the chapter by summarizing the main results.

3.2. Problem Formulation

% A linear stochastic system consisting of a strongly-coupled siow

core and weakly-couple.d fast subsystems controlled hy two decision makers

is modeled by

2 2
"A z + EIA z + Z B + w; z (0) z (3.1a)

0 00 0 o J Jl ojl + 0 0 00,

•.A z +A z +e A z +B U+ /Z.Lw; z - zo;

i,j-l,2; i#j • (3.1b)

.[-; ..
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12 with the observation vectors for each decision maker given by

YO C 01z 0 + v i (3.2a)

where dimz n 0 dimziniV dimuimmil dim y i= i dim y..= i=1,2.

The processes w, v oi, v ii are assumed to be independent white Gaussian with

covariances W, V oi and V iirespectively, with positive definite Vo, and V..iii

The initial conditions are assumed to be Gaussian with

E[z io Ji

E((z .z z N ij 0,1,2. (3.3)

The small singular perturbation parameters e represent small time-constants,

inertias, masses etc.; while the small regular perturbation parameters ei

represent weak-coupling between the fast subsystems. The states z . are "fast"

since their derivatives are of order 1k . The matrices Ai are nonsingular.

The main idea behind inserting the Ve. factor multiplying the white

noise terms in the state and observation equations for the variables z, z

is to make them meaningful fast variables for control and estimation purposes.

- Without re in the state equation, the variable z (t) tends to a white noise
i i

vector with infinite variance parameter as Lie . If this factor is dropped

from the observations equation, then z (t) cannot be estimated meaningfully
i

Sbecause the signal-to-noise ratio tends to zero as Li-*O. A more complete

- discussion about the use and justification of this model can be found in u33].

. p o * *' . *. -*.--" C . . .
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The cost functionals of the two decision makers are given by

-. T
J - 0 7 '(T) oz o(T)+ iz'(T)rizi(T) + f (z' izo+ziizi

0

+ u'Riu )dt} ; i-1,2. (3.4)

The equilibrium solution to the stochastic zero-sum game under

general information structures has been obtained in [26,29]. The solution

has been shown to require infinite-dimensional compensators which are not

practical to implement. Although the general solution to the nonzero-sum

Nash game has not yet appeared in the literature, it appears however, that

infinite-dimensional compensators would still be required. In such a case,

one can either make specific assumptions regarding the information structures

of the two players, under which the required compensators turn out to be

finite-dimensional dynamic systems (28]; or solve the problem under the

formal restriction that each player is limited to a compensator of fixed

dimension, the output of which is all that is available to him in the genera-

tion of his control at that time (35].

Our intention here is not to solve the general LQG Nash game, but

to obtain approximate limiting strategies for a given solution methodology.

For this purpose, we extend the results of [35] for the constrained esti-

mator problem, to two-person nonzero-sum LQG Nash games and based on this

solution methodology obtain the limiting strategies under a multimodel

situation. Our motivation in taking the above approach is that finite-

dimensional estimators are practical to implement, and possess some nice

properties.
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' .The definitions of the various matrices that appear in the

following analysis are given in Appendix B. Defining x- z z]',

Y , 1  .. Y 1' vi- ' v>1 V'i' the system of equations (3.1)-(3.4) can
i r

be written in a composite form as

2S- + Bu +Lw; x(O)-x (3.5)
j=l Juj+ w 0

Yi Cix + vi; i-1,2. (3.6)

E[x I Xo; E[(x -i )(xo-Xo)'] = N (3.7)
0 0 0 0 0 0

where dim x - n = no+nl+n2P dim Yi P P oi+Pii

S -1 x(Tr( T

Ji 2 x'(T) x(T)+f (x'Qix+uRiui)dt}; i -l,2. (3.8)

0r
*Each decision maker is constrained to use only an n-dimensional compensator

, of the form

x F + G[Yi-C i + Hiui; i-1,2. (3.9)

The decision makers are required to select the matrices F*, G*, H , the
i~ i

initial conditions xi(O), and the closed-loop control laws u(i (t),t), such

that

E[Ji (u*,uIx] ECJ (u u)Ix 1; i,j1,2; i~j (3.10)

where X denotes a combination of .(t) and the a-priori information.

The pair of inequalities in (3.10) define the Nash equilibrium

for the problem (3.5)-(3.9).

To solve the problem posed in equations (3.5)-(3.10), we need the

following result which is a generalization of (351 for the nonzero-sum case.

... - .. . .- ..-. ... .. ._ .. - ,..- ..._ . . .
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Theorem 3.1: A sufficient condition for two closed-loop control laws

(u*,U*) to be a Nash pair for the problem defined by (3.5)-(3.10) is that

there exist real-valued functions Ii(x,t) differentiable in each variable,

which together with u* and u* satisfies for all te (O,T] the following
1 2

conditions:

Defining for all trE [O,T], the scalar functions Sby

2
-xU~ t Xt + I (x, t)fAx+ Z B u + Lw]

+ . x'Qix + I UfR u~

min EfSi(x,uipu'!,t)IXi(01} - 0
ui

E{9i(x,u*'u ',t)IXiW) - Q

I (x,T) - ~ 1

i~j-l1,2; i#j .

Applying Theorem 3.1, the solution to the full problem (3.5)-(3.10) is given

by

u* -R -RB' (3.11a)

- -. 1 R BK [I+ (M M )(M -Mi ] (3.11b)

*G* -M C' -l (3.11c)
Si imi

lI* B (3.11d)
m ±

4 i*C0) -(3.11e)
i 07

where K satisfies the coupled Riccati equation
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SKi +KiA+A'K±+ Qi KiSiKi KiSjKj - KjSjKi -0; Ki(T) i" (3.12)

M(t) is a symmetric nonnegative definite matrix defined as,

- M(t) - E{m(t)m'(t)} ; M(t) -x (3.13)

x-x2}

satisfying the differential equation

M FM+MF'+BOB'

with (0) XX" + N; i j 0
Mij 0 0r

= N elsewhere. (3.14)

The following relations can be readily derived:

SE{x(t)X ( i(t) (3.15)

E{(x(t)-i (t))i(t)} - 0 (3.16)

E(ij (t) IX (t) } - [I + (M -M ) (M -M )-lx (t) (3.17)j i jo ji 00 oi i

M - H-M (3.18)Mio oi Mii " Mii

I (xt) -x'lx + bi(t) (3.19)12 1 2 (c

T
b i (t) - tr{fT(KiSiKiMii + KiS K Mjo +K S KiMoj )dr} (3.20)

S(J*IXi} -1 (xi(0)Ki(0)xi(0)+tr{Mii(0)Ki(O)}+bi(0)]. (3.21)

Notice that the optimal control gains are independent of the filter matrices

Land covariances; but the optimal filter matrices and covariances depend on
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the control gains resulting in a "dual effect" which is optimized with

respect to the given filter structure and the cost functionals.

The linear strategy (3.11a) is the unique Nash strategy for the

above problem. Nonuniqueness does not arise because it is not possible to

express xi at time t, in terms of the values of i from 0 to t, due to the
ii

presence of white-noise-corrupted measurements (3.6) [27].

The following assumptions are made throughout.

Assumption a: Re X(Ai) < 0 ; 1 1,2.

Assumption b: The triple (Aii,Bii,Cii) is controllable-observable.

From the solution obtained above, it is clear that the optimal

finite-dimensional compensators are not Kalman filters, and hence the earlier

results (30-34] on filtering and control of linear stochastic singularly

perturbed systems do not apply here. A number of important questions now arise:

What is the limiting structure of these finite-dimensional compensators as

the small parameters go to zero? Does the full order compensator decompose

* * into a number of decoupled low-order compensators? Does the resulting limiting

structure offer any computational and/or implementational advantages? Is it

possible to obtain a near-equilibrium solution based on the solution of low-

order problems as in the deterministic case (15,16]?

It is our intention here to answer the above questions, Specifically

we shall show that the multimodel solution is the asymptotic limit of the

exact solution as the small parameters go to zero. To obtain the multimodel

solution, we first need to derive the simplified model used by each decision

maker.
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3.3. Multimodel Generation

DMi arrives at his simplified model by neglecting the dynamics of

- the j-th fast subsystem and the weak interactions between the two fast

subsystems, i.e., by setting £j=O on the left hand side of (3.1) and

Cll £22 =0 in (3.1). The steady state dynamics of the J-th fast subsystem

is then given by the algebraic equation

t) 1 (A z +B u + / Lw). (3.22)
z =  joo iii i i

The above expression for i (t) has been shown to be valid as input to slow

systems [31]. Therefore, substituting (3.22) in (3.1), (3.2) results in the

following simplified model for the ith decision maker,

.(i) ACi) z () + A z W) +B u +B u +L Mw; z(i)(0)z .(3.23a)

.0  A 0  o oiB is oi l o 0 00

A (i) + A z Lw; z i) (0) (3.23b)

i) iozo iiz +B ii +/F i i

The observation vectors for the two players are given by

yi) C z +D u +v (3.24b)s o isj + js

Notice that in the above simplified model used by DMi, the two decision

-- makers do not interact at the fast subsystem level, but interact only at the

slow subsystem level. Therefore, to obtain the multimodel solution,DMi needs

only to know the parameters associated with the model (3.23), (3.24) ; an

..............
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exact knowledge of the full model (3.1), (3.2) is not required. The multi-

model solution is then obtained by solving three low-order problems: two

independent stochastic control problems for each decision maker at the fast

subsystem level; and a constrained stochastic Nash game at the slow subsystem

level.

3.4. Weak Limit of the Fast Stochastic Variable

Before we formulate the low-order problems, we would like to

establish the "weak" limit (limit in the sense of distributions) of the fast

stochastic variable which will be shown to be the valid limit for substitution

into the cost functionals. The formal white noise limit (3.22) is not valid

for substitution into the cost functionals since it gives rise to some ill-

defined terms like the integral of the variance of white noise [31].

The following results are needed:

Lemma 3.1: Let f(t) be a function satisfying the following conditions

, i) f(t)20 for all t

""ii) f(t)dt- 1.

Then the following distribution convergence is obtained,

".- lira f~u WO 6( W

Lema 3.2: Let z(t) - - !  fL t)/1~ d, where r is a Wiener process with
41 o

E~dW(T 1)dW( 2)} W6(T1- T 2 )dT. Then, lim z(t)i=w "weakly" for each t> 0, where

is a constant Gaussian random vector with mean zero and variance W which

satisfies the equation
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A + WA' + LWL' -0.

Setting e~ e2  0Owe rewrite equations (3.1b) as

C. dzi -A z dt + A z dt +B .u dt + /L dri (3.25)
Sioo 0 i i 11

where 77 is a Wiener process such that w-w. The integral representation of

equation (3.25) can be written as

z~ C) A eit/zi + i Ai(t-T)/ei+iuC'

ii 11 feii iL

+4 -i d;(T). (3.26)
i 0 i

A straightforward application of Lemmas 3.1 and 3.2 yields the following

"weak" limit

z ()- lim Z (t) - -Au (Aozo +Biiui) + wi, (3.27)

where wi is a constant Gaussian random vector with mean zero and varianceW

* - which satisfies the equation

A AiiW i + W iA i + L WL' -0. (3.28)

3.5. Slow Subproblem

-rThe slow subproblem is formulated by setting e 11" C22'0 0 and

£ 1 0 .2= 0O on the left hand side of (3.1). The formal white noise limit given

by (3.22) is substituted into the state and observation equations (3.1) and

(3.2); and the weak limit (3.2) is substituted into the cost functionals

(3.4). This gives

rA
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A Az + E B U + L w; z (0) z .(3.29)
0 0. SOS j ii os os 00

y 5r C~5 0  + D~ + v; 1-,2. (3.30)

Each player is constrained to use only an n-dimensional compensator of the

form

z , ~ i i + G1 sy s-c is s-D iu. ] + H iuis. (3.31)

The expected values of the cost functionals are given by

E(J1 1Z] --IE(z's ()Oz (T)+ f (z'sQ~Zos +2z'Qi i 2 05 oi osoos sisis
0

+ U R u1 )dtjZ ~1+ 1 tr{Q1 1} (3.32)

The decision makers select the matrices F*5  G, H*; the initial conditions

si (0); and the closed-loop control laws u s( i()t uhta

Applying Theorem 3.1, the equilibrium solution is found as

uis Ris [Bis Kis + is isi(34a

-* A -B Rj71 (E' K +Q' )[I+(M- i)N - )] (3.34b)
is s jss jsjis js Roi)R o oi

G - (M1 Cs-LsWE,)Vis (3. 34c)

-* B (3.34d)
is is

(0 z (3.4e
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Uwhere K is the solution of the coupled Riccati equation
is

+~ +Ki1 +A'Ki + (Qi i R 1Qis)- -K isS isK i Ki S K.

-KisSii K 0; K (T) -r.(3.35)

1(t) is a symmetric nonnegative definite matrix defined as,

1(t) E{rR(t)E' (t) } FE z [Z (336
as si 3.6

satisfying the differential equation,

M-F M + HRF' + B 0, B'
s 8 S S

with

ij 00 00 00

-N0 0  else. (.7

The expected value of the optimal cost is obtained as

E{JiIJZi - ;;Zi(O)Kis (O)zsi(O) +tr{Mil (0)Ki 5(0)}+b~ (0)]

+ztr IQiW] 1 (3.38)

where

b .t)intr(f (Q +K B IR [Qi+BsK is] +K B R; (B K
is siis is s iis ii isjjs i sijs

+ J)Mjo+ (Q JS+K JSB )SR7 B' SK isHO IdT}.(39
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3.6. Fast Subproblems]

The fast subproblems are "local" problems for each decision maker.

These are stochastic control problems because the decision makers do not

interact at the fast subsystem level. Assuming that the slow variables are

* constant during the fast transients, we obtain

£i if ii if Biiuif+ i iw(.0

y Cz + V.v (3.41)
* iif Cii if i ii

~if 2 {C iz if M f(T) f(zfizif(T+f -jRiui dI (3.42)

0

Theopima uif minimizing E( fis obtained by applying the separation

principle, so that

Of -nRi 'Bii-ifzi (3.43)

where K ifsatisfies the Riccati equation

C KiAii-Aj - K S -T (3.44)i f i i iif- Qi+if ii if ijf(T)

* jfis the output of the Kalman filter given by

4i
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- a £j jf Aii if+Biiu if- iC [Yiif-Citf; if( ° if iio

?: -.. (tlSl~if if+pi~lli i, -I Yi+ C ¢A i(Aiozsi + B,.U~s-l f

7"n (A - + P C' V-1l~y  + C -1i
• -[.i (ii-Sii if-Pif ii) if if li i ii Ciiii{Aio

'-1
-B R (B K + Q')} ]. (3.45)

ii is is is ,isil
Pif is the error covariance of if satisfying

£iPif fAi +AiiP if LiWL - PifTiPf Pif(0)=Nil. (3.46)

Under the Assumptions (a) and (b), the limiting behavior of Zif Pjf' Kif,

and uf as e -)0 has been considered in [31] and is summarized below:

Uf uifi*+0(e ) (3.47a)if i

Zif z if+ 0 (Ci (3.47b)

Kif W Kif+O(ei) (3.47c)

.Pf , Pi + O(Ei (3.47d)

r where Pif' Kif, if, and u satisfy

PfAi + AiiPif +LiWLi - fifTiiPif 0 (3.48a)

r Kif Aii +A 'f+Qi -KifSi±Kif m0 (3.48b)

Szif (A ii-S ii Kif-PifTii)zif + PifCiiVii[Yi + CiiAii(Aio

"B 1 R7,lS(BsKis + Q 5 )} z si] (3.480)

"Ruif in"R z (3.48d)

.....- ,.-:-.... -,..... .... -....... .2-.-' L
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The expected value of the optimal cost is given by

T
E(J*f tr{ I Id+i rP fIJf) f i+KifPifTii if}dt+T tr[PifT)i]

0 + - _
Zi-: iK (0) . (3.49)

2 ioif ()o

In the limit as e-0 this reduces to

.E(Jif) T tr{[ Qi + KifPifTi±]Pif} (3.50

The approximations obtained from equations (3.47) and (3.48) are valid only

on a subinterval [tl,t 2] C (O,T) because the "boundary-layer" terms have been

neglected.

3.7. Limiting Behavior of the Optimal Solution

The multimodel strategy pair used by the decision makers is given

by

u = u* +-* -R- I [B'sK +Q' 12 -R 1 B . 1-1,2 (3.51)
im is if is sis i 3i i- iifif

a
where Zsi and z if are the states of the no- and n i-dimensional compensators

given by (3.31) and (3.48c), respectively.

We shall now examine the limiting behavior of the exact solution

(3.1l)-(3.14). For the sake of brevity, the detailed manipulations involved

in taking the limit of matrix equations as he I - 0 are omitted.
:2i
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Let the solution of (3.12), Ki,be of the form

;,;~0 1. 0 O 1 2 -02 )

- 1 1 (") £ 01 (11 e 1

L z2() (E) ,/q72Kl2(e) Ez 2 2 
( ) (3.52)

Substituting this in (3.12) and taking the limit as IE:R l0, it can be shown

that

(E)(e) SK + o(IlE11)

00 is
""" '" "~ ~~~~~~(i)( € K s" o o i 1

- (E) - K + CI 1 II)

: Kij(e) =Kifo(1l II)
(i

OL KK i.) E +0(le I1)

.JJ

where A - - ( 3
Ei (SoiKif -Aoi)(Ai , - SiiKif)

Ei iAjOYif(Aii - SiKif) (.3

Let the solution of (3.14), M(t),be of the form

0 " (E)  M11(E) M22(E)
M()- Mjj(c) M1 1 () M1 2(e) (3.54a)

L-M2(E M12 (E) M2 2(E)

Lii



where each block is of the form

00 02H0 0 o (ee)e-O e;o(C)  o ) 00 2 -01(c) ,---=.oI' 11 (Cl2 C
0010 M0 Moo0

02' 12' 22
L2 Moo0 () Mo0 (e) M0 (e)

r00  '7 1 0

ii Ii2 11

-i-..)-1 O '11 12,=:M Mi ( )  r,. o M~ni ( () Mii ( )

S• -. V 02' .12' 22=:.~ .¢2 ii ( ii (€ ii(

M2 (C) CMI2 (C) 2M(C)

12 10 1 12

M(C M M1 2(C) M1 1(C) H12 (C) (3.54b)

- 21, 2 2.,_ V MI (C) MI2(C, MI2(C)
L2 12(c 12 12

Substituting (3.54) in (3.14) and taking the limit as IIcI- 0, it can be

shown that,

M E() M + o(II I)

ii. - oi
S() " P+0I li)

12N.1 .(e) = OCtiell)

( E) - o(IIEI)
00c -M 0 OdeI

E0.(c) 0(I()
i O

M O(IICf) (3.55a)

' '- i- " 'i i " - " , ' - " " ' " -- . , - ,i " " " ,:2!
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The remaining matrices,which we do not need explicitly satisfy

the following set of equations:

A 1ii(0) +AiiM(0) )A

ii oi-.A0 iM (0)+M (0)A i+M (Ai'0+LWL'-0

AoiM (0) +M12 ()Aii AiOO - 0

ii oi ' -,oA~ mi, TA iM00(0) +M00(0)Aii +MAI" + LeW14 - 0

Qi ii oi iiA0 M00 (0) +A ii0(0) + 00 (0)AIO+M00(O)Aii +LiWLi = 0

Ao~i+{O(AA 01 - -
Aeji - ii (o)Aii + iiAio+L0i - (MiiC0i +Mii(o)ci)vi CiPif 0

0101 -, -1= -
A P + M (0)Ai + M2A' +LWL i +1- (O)CI)V 0. (3.55b)
Oj if 12 1ii 12 io+0i l2J +12i i i i if

3 The limiting solutions given by (3.53) and (3.55) are valid only on a sub-

interval [tl,t 2 ]C (O,T], because the boundary-layer terms have been neglected.

Write the closed-loop system as,

Am -Ax - Sl I -S2Ax2 + Lw (3.56a)

- (F iSiKi)xi+Gi i ; \Jyi ci i-1,2. (3.56b)

Define

X i  " 1 0,1,2 ;(3.57)

then (3.56b) can be rewritten as,

+ o A o +A x + +02 o (3.58a)
" l~~0 00 0 011 0 i 2X2 i (35b

E A x +A x +CCG (3.58b)

11 10 0 11 x1+c 1 1A12 ,

E A x E A ' V 35c

2• m 2 0 2 21 1 2

.'' -'.° X... - A2 x. 2A 1 c +A 2 x -i- e2 v. (_3_... = = _ - .. ..'c ..)"
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The form of the compensator equations (3.58) is identical to the form of the

state equations (3.1). This form permits easier manipulations to obtain

their limiting behavior.

Now, we transform the equations (3.58), in order to separate its

slow and fast components. The transformation and its inverse are:

Fn I1 vlee~NT-ENT E:/ N E N
TJ * N [1  0 x] (3.59a)

it2T 2  012

i ,-"w h e r e ,

e; T inAiiTi "A1 O - c iT i ( ( 0 oT 1 -A0 2 T2 ) + € iAjT (3.60a)

L- - A - - ErTOo0C) _ (A o" o2

+vC~~i2A'0- T I(A0 0 -AoT 1 -Ao 2T 2 NVi§l i,j16,2;i j (3.60b)

- Transforming (3.58) using (3.59) and (3.60) results in

: oo A00. 1 A0. 2Tzln.- (N1( 2 ~iT~oi -1 C

+1. 1 T N 1 -N N 732

102 2 22 2 2 2

E 2 2 T2A +: T (10 - A 1T 1  T [A T (3.60a)

• ,, ,,;:l - T + 1J (e1 -1. 0 1  T N1 A1 G0 +-N 1 G1]v (3.60b)

no CA2 -eTA01T+c 2 T2 n 1+ (N2 2 0 GA2 r 2C +~TG I ~ e 2 vN T36
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U It can be shown that the limiting solution of (3.61) is

(2) 0  + o /2 (3.62a)

F" 1 i f ( 1 + o(ll )/ (3.62b)

n = 121 - + o(i0,ll/) (3.62c)
2 [n(2) [zfJ

* .! where

!i- (j) (A -B -'B'if)-(J) i(j)(o) o (3.63)
,.i " i (l-Bii i Bii fn i  ; Zio

The limiting solution of n0 is just the compensator of the slow subproblem;

and the limiting solution of one component of ni is the Kalman filter of

the fast subproblem. The other component of ni, which is the estimate of

the ith fast state by the jth decision maker, tends to a filter based on

*I the a-priori information which is all the jth decision maker knows about the

ith fast subsystem. This estimate is of no use to him since his near-optimal

S,strategy given below does not need this information.

The equilibrium strategies are approximated as,ia u RI K xAi_
i i i i 'i- K ifzif i is+is +q siI+o(1 ) = u* +o(Ue0 /2

i = 1,2. (3.64)

The optimal expected values of the performance indices are approximated as,

V.-

t2

L

..........."-"- . . . . ..".-... . ... .- .. . . . ." '- ' " " i "-< i
2

" - - " - "
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E{J*IXi} = l[ci(O)Ki(O)ii(O) + tr{M (O)K (O)} + b (0)]
- -2 -i , 1 - +

Str[i FiPif] + T tr[Qi(Pif +Wi)i i f ^,i~ii

+2[Zi(O)Kis(O)Zsi(O) + tr(Mii(O)Kis(O)1 + bis(O) ] + 0(I )

E{JsJZsi} + E{j(f} + 0(EI); i-l,2. (3.65)

Equations (3.64) and (3.65) are obtained by substituting the limiting values

of Ki and M. To get (3.64), also had to be transformed using a transfor-

mation similar to (3.59).

The multimodel nature of the problem is apparent from the form of

the near-optimal strategies (3.64), which suggests that the ith decision

maker needs only to model the dynamics of his own fast subsystem and the

common slow subsystem.

The structure of the near-optimal scheme is similar to that of the

deterministic problem treated in [15,16], in the sense that the fast sub-

problems are control problems different for the two decision makers and the

* ,slow game problem is common to both the decision makers. This is essentially

due to the fact that in both cases the fast subsystems are weakly-coupled and

are controlled by a single decision maker. In situations when this is not

true, the near-optimal solution will be quite different as has been demon-

strated for deterministic problems in Chapter 2.

The overall near-optimal filtering-control scheme is depicted in

Fig. 3.1. The hierarchical nature of the filter implementation, wherein the

estimate of the slow filter is one of the driving inputs to the fast filter,

can be seen from the figure. This arises naturally due to the fact that
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the innovations process driving the fast filter needs the "fast" output which

is generated from the actual output by subtracting out its "slow" part

" . formed from the slow estimate. This fact has been pointed out in [34] for

-"the single parameter control problem.

3.8. Conclusions

S.A decentralized filtering and control scheme has been presented

for two decision makers controlling a large scale system. It is shown that

in order to obtain near-equilibrium Nash strategies, the decision makers

need only solve two decoupled low-order problems:. a stochastic control

. "problem in the fast time-scale at their "local" level, and a joint slow game

3 lproblem with finite-dimensional state estimators. This leads directly to a

, multimodel situation wherein each decision maker needs to model only his

local dynamics and some aggregate dynamics of the rest of the system. The

* advantages of using the proposed scheme are apparent. The decoupling of

solutions at the subsystem level would result in considerable computational

'K saving. Also since the near-optimal strategies need only decentralized

"state estimates," each.decision maker needs to construct only two filters

.'" of dimensions no and ni , respectively, instead of constructing one filter of

dimension n0 + n + n2 as required by the equilibrium solution. This would

result in lower implementation costs.

. -:. It is to be noted that the problem addressed in this chapter is

quite different from the earlier problems on filtering and control of

stochastic singularly perturbed systems. The earlier work focused on

appropriately characterizing the limiting behavior of the fast variable in

I2
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the presence of white noise to obtain well-posed lower order problems. The

high-order optimal singularly perturbed Kalman filter was shown to decompose

into two low-order Kalman filters in the slow and fast time-scales in the

limit as e- 0. The problem with multiple decision makers possessing

differing observations under a multimodel situation has been addressed here

for the first time. Since the estimators for this problem are not Kalman

filters, the earlier results could not be applied here. Therefore we had to

examine the limiting behavior of the particular estimator structure adopted

for the optimal solution. The result shows that in the slow time-scale the

estimator retains the same structure as the optimal, but in the fast time-

scale it turns out to be a Kalman filter. Furthermore, we have established

. the "weak" convergence of the fast variable which is shown to be the valid

limit for substitution in the cost functionals; a fact which had not been

established so far.
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CHAPTER 4

A MULTIMODEL APPROACH TO STOCHASTIC TEAM PROBLEMS

4.1. Introduction

In this chapter we continue to study the role of time-scales in

- . multimodeling of stochastic linear systems. We shall demonstrate the well-

posedness of multimodel generation by "k-th parameter perturbation" for both

static and dynamic team problems under certain quasi-classical information

structures. The weak-coupling assumption on the fast subsystems is retained.

In Section 4.2, the general dynamic team problem with sampled

observations and quasi-classical information pattern is formulated. In

Section 4.3, a multimodel solution is obtained for the static team problem.

Then, in Section 4.4, the solution of the static team problem is utilized to

obtain a multimodel solution to the dynamic team problem under the one-step-

delay observation-sharing pattern. In both cases, the multimodel solution is

shown to be well-posed; in the sense that it is the asymptotic limit of the

optimal solution as the small parameters go to zero. The chapter concludes

with Section 4.5.

4.2. Problem Formulation

The system under consideration consists of strongly-coupled slow

core and weakly-coupled fast subsystems controlled by two decision makers.

It is modeled by the Ito differential equations

.............................."---.. . .- N- .
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2 2
~ 13 dZ0  (A00Z0 + E (A0jZj + B0 u~ dt +ZE F dw; Z0 (t) Z0

dZi- (AIoZ0 + AiiZi + eiiAikZk + Biiui ) dt + V-irFidw±; Zi(t0) Z

,.: t X to; i, k-1,2; ivk (4.1)

where dim Z n, dim Zi ni, and fui(t); t 2t t o are midimensional

stochastic processes denoting the controls of DMi. (w (t); t a tO; iil, 20

are standard Wiener processes independent of each other. The small singular

perturbation parameters ei > 0 represent small time-constants, Inertias,

masses, etc.; while the small regular perturbation parameters ei, represent

weak-coupling between the subsystems. The states (Zi; i1,2) are fast since

their derivatives are of order l/e . The matrices (&it; 1i1,2) are assumed

to be nonsingular.

The initial conditions are assumed to have Gaussian statistics with

known parameters which will be specified later. The decision makers make

-. -independent decentralized sampled measurements. Specifically, it is assumed

that a pi-dimensional observation

... yi(J) - CiozO(tj) + CiiZ(tj) + vi(J); i-1,2 (4.2)

is available to DM at the sampled time instant tj where j - 0,1, ... N-1

and t < ... tf. Denote the index set of time samples by

e - 0,1, ... , N-l. Then the random vectors~vi(J), J Ge, 1i,21 are

Lassumed to have independent Gaussian statistics fvi(j) - N(ORij), Rij > 0,

j GB, i - 1,21, and are independent of the process noise wi(t) and the

initial conditions.
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To exhibit the slow and fast variables explicitly, we use the

following transformation;

N" 1 0 N IZl (4.3a)

N2: .n 02  1 2J LZ21L 2JI L

which has an explicit inverser'o :E 2oM 2[ o]
z II

Z1  - -N1 1- E I N 1M1  -62NM 2  1 , (4.3b)

where fMi, Ni; 1-1,21 satisfy

AiiNi " AiO " ciNi (AOOAOiNi-AokNk) + 'iiAikNk = 0

i(A + iNiAo)- AOi -Ck~kNkAOi-Ei(AO-AOiNi-AkNk)Mi + EkkMkAki = 0

i,k " 1,2; i#k (4.4)

The existence of solutions to (4.4) is guaranteed by the assumption

that (Ai , i1,2) are nonsingular [15].

The transformed system and the observations of each DM can now be

written down as,

.' J + BO j (c)uj dt + E F (c) dw=7 Fn j1OI( dwj ON ) 1 00A
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cdi (Ai@Y~l 1  A A(C)l~ + B Btku + B dt + AT,: Fii(:

+ F ik (C)dwk); n -( ) ni ( 4 .5a)

Yj Q ci (e)qo(t +Cjje~l~t c ik(E:) 7 k(tJ) + v fjj)

ta~t; i,k -1,2; i ~k; j E8e(.b

where

-Oe A00 -AO0 1 -A0 2N2

A

Aik(c) Ei-~~rii

A

LBoi(l) B- -ii--~ll~iclkko

A

A
C1 0 (e) -ij~

A

cik(c) -i~i ll~+-ii~

* A

A

Fi(- VcE~N±FOk i,* k-1,2; ± k. (4.6)

L!S
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Notice that in this representation the slow and fast dynamics are completely

decoupled and further as I1Ie-0 1 ( 2 11 E 221), the system matrix of (4.5)

becomes block-diagonal. Without loss of generality, we shall be working with

the representation (4.5) instead of (4.1) and (4.2).

With respect to the representation (4.5), assume that the statistics

of the initial state vector are given by

L110 N LFO (1 01 11 " /2 l /E2 ':2
\:." (4.7)

The reason for assuming the particular form of the covariance matrix

E 0 in (4.7) is because, together with (4.5a), we get cov(noni)= O(Vei) and

coyv (1112) = 04/Te2) for all t 2 tO. If we drop the small parameters from

E02 then the above covariance relations will hold only for t > t 0 outside

some boundary-layer. The results obtained in the sequel would still be true

since the contribution of the boundary-layer terms is only OJ1I). Assuming

the particular form in (4.7) simplifies the algebra.

We now adopt a quasi-classical information pattern for this

decision problem, and follow the formulation of [36). Specifically, it is

assumed that the DMs exchange their independent sampled observations with

a delay of one sampling interval. Such an information pattern is known as

the one-step-delay observation-sharing pattern [37]. Hence, the information

available to DM in the time interval

[titj+ l] is i where Qri " (Ywi cj- (4.8a)
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! U and Cj.l denotes the common information available to the decision makers

;. in the same sampling interval, i.e.;

" -I y(l),y2 (J-l), ..., y1 (O),y 2 (O)). (4.8b)

Let a. denote the sigma-algebra generated by the information set a.
1 i*

Further, let denote the class of second-order stochastic processes

([i(t>, t.2 to] which satisfy the requirement that their restriction to the

interval [tjstj+ ) is measurable, for all J E e. Then a permissible

p strategy for DM, is a mapping vi: [t0 ,tf] x mR(P.+P2)N m, such that

V (.,ij)e Denote the class of all such strategies for DMi by N

It should be noted that for each pair of elements in x , the stochastic

differential iquation (4.3a) admits a unique solution whose sample paths

are continuous [38].

For each (,1Er v2er2), we now define the quadratic, strictly

convex cost function as

2~ -o'(f)iq~f tf
J(vl,v2) - Ef%(tf)Qofjo(tf) +: eij(tf)Qfi(tf) +f CQn o

i-1t

2
+ Z (njQini + uui)) dtlui(t) -'vi(t,fi), i-l,2} (4.9)

i-i

where CQifQi a: 0; i=0,1,2),and the expectation operator is taken over the

underlying statistics.

°-7 Then an optimal solution for this dynamic team problem is a pair

ii (": *ve i , i=1,21 such that

inf inf J(v 1 ,v 2 ) - J(vl,v2) . (4.10)

1 2

."; '- -. ..7 ' . - _ -? ._- _ : . . . , 7 1 • . . . .•.. -s ,, _.- ---- -,- .-. ,,. . ... .. .... " -.....-..... ..."....
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Defining x'= [rnn? and w' [wW] equations (4.5) and (4.9)

can be written in a composite form as

2
dx . (Ax + j i B u)dt + Fdw; x(t0) = x0  (4.11a)

yi(j)- C x(t) + vi(j); I-1,2; j e 8 (4.11b)

tf
J(v1 ,v 2 ) - E(x' (tf)Qfx(tf) + jf (x'Qx + U u1 + uu 2)dtlui(t) -v(t,l),

.. o

;i- - -1,2](4.12)

where

A (E) 0 0 B (E) F0  02)
!!:0.. 0 01 -0-2

0' [_i^ () B=1fl( )  F , () F (e)[

e 1 12C1l E112
0 A (E-) A2() 1(c) L 2 12F  -2F 2 2 (C
0 £2 21 2 £2 2 i 2 £2

C Ci = CC ii0(E) C iI(E) C 12(0)]

' Qf = block diag [Q~f9C lQlf, 2Q2f]

Q = block diag [Q0,QIQ 2]. (4.13)

The following assumptions are made in order to guarantee the

existence of a unique limit, as Ii LI 0, of the optimal solution.

Assumptions:

a) Re X(Aii) < 0; i=1,2

b) (Aii,Bii, VQi) is controllable-observable; 11,2.

Before obtaining the solution of the dynamic team problem defined by (4.10),

(4.11), and (4.12), we first consider its static version (obtained by

setting N-i) in the next section.
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4.3. Static Team Problem

S..In the static version of the dynamic team problem formulated in the

last section, the decision makers make noisy linear observations of the

.. ,random initial state, and do not require any further information as the

decision process proceeds. Hence, the static version can be recovered

from the general formulation by setting N-1.

To this end, let the observation y_ of DM be given as

Y W Cix0 +vi; i1,2 (4.14)

where vi IN(,R i) and x0  N(x0 , 0) and these random vectors are statis-

tically independent.

An optimal solution for the static team problem defined by (4.lla),

(4.14), and (4.12) is a pair {v erl i1,2} such that

iUf inf J(vl," 2 ) - J(V ,V) . (4.15)

r r 1
1 2

V_ The unique optimal solution to this problem is given in (36], and can also

be found in Appendix C.

Due to the presence of widely separated eigenvalues, the differential

equations (C2)-(C17) involved for computing the optimal solution are numer-

ically stiff. This renders the optimal solution computationally infeasible,

" specially when the order of the system is very large. Sometimes it is

-- even difficult to obtain the optimal solution; e.g., when the small per-

' 'turbation parameters are unknown, or when one DM does not have a knowledge

of the fast dynamics of the other DM. In such cases we need to look for

• .other suboptimal solutions. The multimodel solution proposed here does not

*/" require every DM to have an exact knowledge of the fast dynamics of other DMs.

.......
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Moreover, as we shall see later, it is well-posed in the sense that it tends

to the optimal solution in the limit as the small parameters go to zero.

Before we propose the multimodel solution to the static team problem,

we need the following result from Chapter 3.

Lemma 4.1: Let n (t) satisfy the Ito differential equation

Lidili - (Aiifli + Biiui) dt + V Fiidwi (4.16)

where w1 is a standard Wiener process, ui is a known function of time, and

Rek(Aii) < 0. Then Ili(t)-qis(t) weakly as c:CO, where

'is Ui ", -A+ Bwi (4.17)

and w i is a constant zero mean Gaussian random vector with variance W i

satisfying the Lyapunov equation

Aii Wi + Wi Aii + Fi Fii - 0. (4.18)

The weak limit of fi(t) has been shown to be the appropriate limit for

eliminating the variable Ji(t) from the cost functional J to obtain the slow

cost (Chapter 3).

The multimodel solution is obtained by solving the following low-

order problems.

4.3.1. Slow subproblem

This is a static team problem obtained by taking the limit as

Ad- D 0 in the original problem defined by (4.11a), (4.14), and (4.12).

2 2
d0 s = (A00 + £ B0i Ui) dt + L F0i dwi; 10s(t0 ) 1-O (4.19)
,Os 0Os il il

_4J
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Yj5  C (4.20)

io 100 + Vi yi-Cii i 1,

tf 2
E tq~s~tf) (f 10 (tTt + 'sls J2s fh 8 t) f I5(f)+f Os is Os ~ u 8 R 8 uL

to i-i

dtjui8 (t) -i v1 8 tA 1v), 1-1,21 + JO(4.22a)

where

-1+ 4, (AlB-1Qi( 42b

2_
O (t-t) E tr Qi) (4.22c)

ini

W. is the symmetric nonnegative definite solution of the Lyapunov

equation (4.18).

The unique optimal team solution to the slow subproblem defined

by (4.19)-(4.22) is given by Theorem 2 of [36]:

(~ t) -P 8 LYjL 1 II 0 jjC0  - I B± Ss Os(t); 1t ±, (4.23)

where S (t) is the nonnegative definite solution of the Riccati equation
S

S+ A'S + S A S8  (E + E ) 0 0 t ~ 42aO s S i s 2s 55+ 0; Stf) 42a

1 0 (t) -(A 0-E 1 sSs-E 2 sSs) 1q0 (t); '% 8 (tO) - (400b

a R -1 B S [

~i ~ 0  ~ 8  [ 1 -L 5Z ] - R1  B0  K 8; i,Jinl,2; i j (4.24c)

S 5 (t) is nonnegative definite solution of the Riccati equation

S. , ..... t < is
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* I

S + A0 Sig + Sis A0  S E1s s + O 0; Sis(tf) - Q0f; i-1.2, (4.24d)

and

is "Ao-EiaSis] P + Eis (K 4,SiLj5 T 8 ]; P s(t 0 ) "0; i,J-l,2; i j J

(4.24e)

A A

Li8  A0 is + Ei Ss is[P Js-L is] C i 0 - Eis Kis Ci0 ; Lis(t 0 ) " ;

K-) 0 ii,J-j,2; 1 J (4.24f)

!' gs "-[A0-E sSs' Ki- Si Es S E$ [P -Nsr ] E. 0 c E

i 0iis i is -E js Ks = 0; j i
+ i EjsK s J i Kist 0 ij1,2; ij(4.24g)

S 1s B 00 C 0 [ci 0 0 0 ci 0 + CiEiiICii + Ri] - ; i1,2.0, is0, s 00i

(4.24h)

The minimum value of J is given by

".. * * * -0 -
sin Js(UlsU2s) 00 Ss(O) q00 + tr (ZooSs(O))

tf 2

+ tr(f S (t) E F 0 F'dt) + J (4.25a)

where tf 2f ^I) ^i +(1)'A(1) RI+(2) A(2) R
Jms tr Jt u - jO) "O1  EOo +A ( is is

+ s E S W)]dt (4.25b)

with

.~ 4
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A^~t ~ 1  -1 ' + -1BO

C(0 R)5 B0(St)L 1 + L18) 3R1 B0  S8  (:to);
03 = Pis C io'R is B oi S 8 s + ) + 3RiB S800tt0

i nj1,2; 1 6 j (4.26a)

i () P + Rs Bi Ss Vis; 1-1,2 (4.26b)

A()(t) R B;j Ss Vis; ij-l,2; 1 0 J (4.26c)i is
iis E Ks 01s (to V15  0,1,;

s AO Vis + Eis Sis P1 5 -LjsZis] E1 s KPi; Vis6 (tO) 0;

",Ji-l,2; i j (4.26d)

W A0 W +WsA + F01 F;1 + 02 F;2 0 ;W(to) 0 (4.26e)

S"0 O A0 0; 00(t0t0 ) =  .(4.26f)

4.3.2. Fast subproblems

These are stochastic control problems for each DM (i=1,2), which

are defined by the state equation

£1 dj if = (Aiijif + Bi uif) dt +ec Fi dwi; 1if(to) O (4.27)

the initial state measurement

mA

Yjf " + =  o00(4.28a)

LiO N.i0. :ii); vi N(0,Ri) (4.28b)
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and the cost functional

to

vif (t scij)l. (4.29)

The unique optimal solution to these static control problems is given by

U ~(t) -B S T tt ECI'Cii, B S(.0

if ii ijf if ~0) Zif fy~i~oCiIo ii, if 't' 4.0

where Sif(t) is the nonnegative definite solution of the Riccati, equation

iSi r-AiiSi - Si- qi + SjfB±±ELiSif; Sif(tfi f (4.31a)

Tif(t,to is the state transition matrix of the system.

Liif(t) -(Aii-BiiBii~if) Jif(t); 'jif(tO) J i10  (4.31b)

and

I A At -
if ii C i (CiO 0 C o + C,.i ii C i + R d (4.31c)

The minimum value of Jf if ie by

i j (u F-i o Sif(O) qiO + eitr (Eii()

irf ifF 1F 1 t ifE(43a
to

where

to r A if i R~ + Sf Bi B1  Si Wi)dtl

(4.32b)
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with

A (t) -2 "B(i Sir 1  (tt0 ) -Bi Sif Yif (tft0) S C,) (4.33a)

A-()(t) - -B (4. 33b)if jj if '6 (tt 0 ) ':if

£' ii1 (t1 t0) -A ii 01 (tit0 ); 01 (t0 ,t0 ) - I. (4.33c)

Under Assumption b, Sif(t)+Sif as e )0, where Sif is the unique

positive definite solution of the algebraic Riccati equation

;- ~Ai S + Sir Aii + Qi Sir Bii j i "(.4

Aiifif A±Ili S if3~Sf 0 (4.34)

Also, Jjf~ jif as E: 0, where

SJM tr S F F 1i dt) + (4.35)

t 0

*and i is ;,with S freplaced by Sif.

The optimal Control u*f(t) tends to Uf(t) as e 1+0, where

U is u.f(t) with 5f replaced by Si*

The multimodel strategy pair {u (t); i=1,2} is formed by combining
im

the optimal strategies of the slow and fast subproblems.

* u 3m(t) - uis(t) + uif(t)

A -
- , = [P18 (t) " ~ s~~.ii Yif(toto) i_] [y1'C1o 'o0 " c11  o]

R is BOi Ss s(t)" Bi i Si f if(t) (4.36)

...... . ............
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The following proposition now establishes the well-posedness of

the multimodel solution.

Proposition 4.1:

a) u*(t) - Ui(t) + 0(IeI); i=1,2; te [t,t 2 IC [t0,tf]

=: b) J* "35 J + Jif + J2f + ol~ei).

Proof: See Appendix C.

4.4. Dynamic Team Problem

We now obtain the solution of the dynamic team problem formulated in

Section 4.2. This is done by first enlarging the strategy spaces of the DMs

so as to formulate a new team problem whose optimal solution can be obtained

more readily. The solution of the original problem is then obtained from the

solution to the new problem.

The new team problem differs from the old one in the information

patterns of the DMs. Specifically, the new one is defined by replacing a
i

and J-1 given by (4.8), by a and Z_ 1,respectively, where

all -yi
( J ) p j- (4.37a)

Cj-j (Cj-l; u1 (t)' u2 (t)' t < ti) (4.37b)

-C...-- ,-. .. . -t .. . . *-.. . . . . . .
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Under this now information pattern, the DMs also have access to each other's

control values used during all past sampling intervals. This information

pattern, though not of ouch practical importance, is mathematically con-

venient for obtaining the solution to the original problem due to the
-9

following fact (36]:

mm mm J~v11 2) -mi min J(v1 ,v 2 ) (.8

where r and N are defined analogous to F N and F N respectively,
1 2 1 2

but under the new information pattern.

For each fv e r e  },the implicit equations

sj "1 J)P -uj(s); 1-1,2; j (4.,39),O

can be solved recursively for Cu (W), j -N-l, ... P0; i-1,21 as functions of

"Cr , J-N-19 ...s0; i-1,21 because of the nature of the information pattern.

Then the resulting functional relations provide a pair in rlN x r2N , and a

4 unique one since the stochastic differential equation (4.5a) admits a unique

solution in each sampling interval. In fact, there exist uncountably many

pairs in ' 1N x corresponding to a liven pair in FrN x F2N;
pairs~~~ 2nrN equivalently,

a pair of strategies under the original information structure has several

representations under the new (enlarged) information pattern (10]. In

[36] one such representation in r is first obtained which is the simplest
1 2

to derive. Then implicit equations of the type (4.39) are solved to obtain

the desired optimal team solution.

4'.

4_ . . ._ 'r''.. - . . .- " - , "j".-., .. ' .. a .mm mm m m . J d l i ' I J'-
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The optimal solution to the dynamic team problem involves

solving an appropriate static team problem with respect to the

current outputs, within each sampling interval. The shared information

affects the statistics of the initial state at the beginning of each sampling

interval. The computational problem worsens, since now we need to solve

a set of stiff differential equations in every sample interval. Hence, a

suboptimal solution without such numerical stiffness will be much more

desirable in the dynamic case.

The multimodel solution, which is one such suboptimal solution, is

*.. obtained by solving the following low-order problems.

4.4.1. Slow subproblem

This is a dynamic team problem obtained by taking the limit as

=ic-*-O in the original problem defined by (4.1l)-(4.13).

The state equation for this problem is given by (4.19), the cost

criterion by (4.22), and observations by

Yis(i) - Ci00s(tj) +vi(J) Yi) - Ciiis(tj)

K i=i,2; j e e (4.40)

The optimal solution to the slow dynamic team problem under the new

information structure (4.37) is given by [36],

A A A

V. 5is(t,;i) = Pis(t) Y±(iJ)'Cioios(tT) - Ciq'ls(tT)l

-RisBoSsos (t,t )n Os(t5) i-1,2; te [tj,tj+j), je6.(4.41)

iss.sj-O.j.
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where

Y08(t't) - (A-E1 S5-E 2 S a Y Os(Ctt); t e [tist J 1 ); Yo -ts I.(4.42a)

A 11; S i' i-c1i() i B'i -s (t6 tl

is(t is BJS+1 8 ~ 5 ~ 8 J i ± K 8

i,k-1,2; 1 0 k; j 68.(4.42b)

Pi A0-E18s18i] 'fs+Es[j4j~ ss jte(it -i t)0~'L s s~i jJ+1

1,kaml,2; 1 # k; j CE8 (4.42c)

L18 - AL 1 + iS [P 1-iiS C~f 8 (J)] A1 - 1 1 1 C 0  (~t 1 ;L 8 t)I

i,Ioml,2; 1 0 k; j G.(4.42d)

K1  A-E 1 8s 1 8)' "is-Sisksks kYs 8 is iC0k± (j) + A-is(

t (t [t Stj+1 ); K1 (tj +) -0; i,k-1,2; ± k; j ~ .(4.42e)

S1i -AZS15-SiSA0-Q0 + Sis Eis Sis; t 6 ft itj+i);S±(j)

1-1,2; j c- e. (4.42f)

-i~i E00 (ty.) CIO (Ci0ZZ(ti I o + C11 W1 C 1 4 .i

1-192; j 'e.(4.42g)

(-) E T 0 (t±)C..] (4.43a)

4Coy (1 ,(tj)s TJ08(t-)) -EOO(tj); J e 8 (4. 43b)

* -. . .. . . . . .. . - AOs
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A AAA2

TI 5 t) '0 tT 8 j yi) 0 1St)- ±.vsj
A01 0 8 + I00As + 2 [t3t); Jt1.2, .t.,Nt

". (t

OS 0 oo 3
(4.44)

22t s(J) [Y(J2-Co2os(t-) E C ii qis (t)];

paternis ive-b

s i,-.I Cis (t ) -Ai Bi uI (t-); Ls1,2.;

o(t) A o o+go6+Fl6 o z t E [t Jl,t) .

"E t00 (to) Zto0; J-1,2 ... ,N (4.45)

A *

h tE 0 (t) F-io(t i ) r ts ( j ) Co 0 o (t4)

A A

0 [CI ,C2o0 O ~

;.'. (4.46) "-

-C 11 C 01' l

"" A" ~ ~ ca2- o c,2' I.

•The unique optimal solution under the one-step-delay observation sharing

"" pattern is given by

*A A ^ A* A*
is :,L) = is (t ) [yiw-) Cionlos (t-j-Ciijis (t-j)] ' i s B~i' Ss ' os (t'tj)qos(t-) -'

1.. i~-1,2; t e -~ t~) lee (4.47) "

^. A*
where IO(t), Jis,(t) are the solutions of (4.44) with Ui(t ) replaced by

;0.

;; ~N 'is (t, )

. . . . . .
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r 4.4.2. Fast subproblems

These are stochastic control problems with sampled observations

for each DM (1-1l,2). Each one is defined by the state equation (4.27), the

cost criterion (4.29) and the observations

Yjf(i) C iifif(tj) +003t viij Yii) t

j e~*(4.48)

The unique optimal solution to these control problems is given by

if (t) -BEiif Cj~~j [01 +K0i.1~)Ci~(t.)-c Ii'(t-)

A *

where S if is the.unique, positive definite solution of (4.34), and

~j ij (tt~ -(Aii-BiiBi±~sif) Tii(tst~) t [tiltj ); if jsjI 4

* if -t~ i~~ j~ f~ J+) Yt1 .f) js 1 (24.50)

A* 0*i

iff~j (to)~j rio )'i~ i. , (.1

f() +Kiij (J)~~ [i-Cij. ~ t + n-l t Cn(-) (.1

-WiC C ~ (t-)Cj0 + C W C' + Ri I; J-192 ... #N.
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Remarks: Notice the sequential nature of the slow and fast sub-

problems. The parameters associated with the solution of the slow sub-

problem, namely, qOs (t ),is (tj), and Z0 0 (tj), enter the solution of the

fast subproblems. This is in contrast to the static problem of the pre-

vious section where the slow and fast subproblems were independent. This

interesting feature, which is due to the dynamic nature of the problem,

has been noticed elsewhere [34].

The multimodel strategy pair for the dynamic team problem

[vim(tai); i=1,2] is formed by combining the optimal strategies of the

slow and fast subproblems

ViV(t, d) Us(t',xi) + uif (t); I-1,2 . (4.52)

The following proposition now establishes the well-posedness of this

multimodel solution.

Proposition 4.2

.. a) vi (t, i) - Vim (t,'ci) + O 1 Ell); il,2 ;

t E [tstj+ ) C [tj,tj+); JE .

. ,, . 2 o"-,
b) J(vl') " J (V ) + + OIn: ).12 9 2si f

Proof: If we let
A A A

(A; A

x
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where

AA

Xt)- x(tT J-1 K*j)

x t (- K~j (j y(T C'((j +C (-] I

j t0 O JR1 3,2~

then Z~ itt is Utagto r to notcyt

-1A
K (j) E A j (t-j))C+'IE jfj) C + ORlcj) I12

r~~~~R dia (R Rt~jQ[ 1 , 1 1
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The rest of the proof is analogous to the proof of Proposition 4.1 and is

therefore omitted here.

The approximation in (a) is valid only on subintervals of the .4
sampling interval due to the fact that we have neglected the boundary-layer

terms.

4.5. Conclusions

We have obtained multimodel solutions to LQG team problems under

the static information structure and also dynamic information structure with

one-step-delay observation-sharing pattern. In both cases the multimodel

solution is shown to provide an arbitrarily close approximation to the

optimal solution.

The advantages of using the multimodel solution are apparent.

Instead of solving one large-dimensioned team problem which is numerically

ill-conditioned, the DMs need only solve one low-order team problem, which

does not depend on the small uncertain parameters, and two low-order control

problems. These control problems can be solved independently by each DM.

Hence, each DM need not know the parameters associated with the low-order

control problem of the other DM. This implies that the multimodel solution

is robust with respect to modeling errors on the part of each DM; a very

desirable feature in large scale system design.

The results of this chapter again demonstrate the richness in the

modeling structure with multiparameter singular perturbations in the context

of multimodeling problems. The limit of seemingly complex integro-

differential equations associated with the optimal solution has a nice

[.
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appealing structure when rearranged and interpreted as a multimodel

solution.

. -- Here we have assumed that the sampling period is fixed and

7 predetermined. If we make the sampling period T a function of the small

parameters, such that T(e)- O as lAd O, then we would not have been able to

preserve the one-step-delay observation-sharing pattern in the limit, because

the observations become continuous. One way to get around this difficulty

would be to make separate observations of the slow and fast variables and

let the sampling period of the fast observations be a function of C.

Apparently, this should cause no problems in the asymptotic analysis because

the fast subproblems would become continuous stochastic control problems in

* . the limit as i 0fl-O. But it is not clear whether the slow dynamic team

problem would require the sharing of the sampled slow observations alone.

Of course, in such a case, one will first have to formulate appropriately

and solve the dynamic team problem with multirate sampled observations.

From practical considerations, our approach here should cause no

problems because the small uncertain parameters are nonzero. This means that

-. in practice the fast variables are not infinitely fast but have a finite

. - bandwidth, and one can always choose an appropriate sampling period from

physical considerations.

W i

Se
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CHAPTER 5

MULTIMODELING IN MARKOVIAN DECISION PROBLEMS

5.1. Introduction

In the previous chapters we have examined multimodel solutions for

* . two-time-scale systems modeled using multiparameter singular perturbations.

In [43,44], the theory of time-scale decomposition has been extended to

* .iprobabilistic Markov chain models where 'slow' and 'fast' eigenmodes

correspond to 'weak' and 'strong' transition probabilities. This chapter

focuses on obtaining near-optimal policies for controlled Markov models

consisting of N weakly-coupled groups of strongly-interacting states. A

hierarchical algorithm, which allows for multimodeling on the part of the

decision makers, is proposed for computing these near-optimal policies.

The existing results on Harkov games [65] do not provide us with a

sufficient background to address the multimodeling problem directly. For

this reason, we begin by formulating the general N-person average-cost-per-

stage problem with state information in Section 5.2. In Section 5.3, the

optimality conditions for stationary FeedbackNash and Stackelberg policies

are derived. The computational difficulties associated with the feedback

policies are discussed in Section 5.4. In Section 5.5 we consider

Stackelberg problems when the leader, in addition to the current state of

the process, also has access to the followers' controls at every stage

[48-50]. An efficient computational algorithm is proposed for computing

incentive policies which help the leader to achieve his global optimum.
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In Section 5.6, we propose a hierarchical algorithm for computing near-

optimal incentive policies for weakly-coupled Markov chains, which allow

the 'local' decision makers to use multiple simplified models. Section 5.7

illustrates the well-posedness of the multimodel solution through a

numerical example. Finally, the chapter concludes with Section 5.8.

5.2. The N-person Markov Decision Problem with State Information

Consider a finite state Markov chain xt, t=O,1,2,... with state

space (l,2,..,n], and controlled by N decision makers with decision

Ivariables (u , A=,2,..,N). The transition probability of the Markov chain

at time t depends upon the decisions (u ; A=1,2,..jNJ chosen at t. Thus,

prob (xt+ Ixt) - prob (xt+ jxtut,.,u). xt is observed at each t and
t

(u; 12.N may depend on it. Hence, we are concerned with feedback

strategies (v (x(t));A=l,2,.,N). If xt=i, then any decision (u E UM(i)
*" mA

c ]R ; .=1,2,.,N} may be used. A stationary strategy is any element

vEr; v = UA(u (l),u (2),...,u (n))Er = U (1) x U (2 ) x..xU (n),

A=1,2,.,N), r r -; A=1,2,.$N. If xtui, and luA(i); 4=I,2,.,N) is used

"" then

PtiJ (ul(£)'" 'UN(i)) = prob [xt+lj Ixt-i)

where Pij(u(.),..,uN(i)): U4(i) x U2 (i)x..xUN(i) IR are such that

ij 0 Pij

For (V LAE; r i1,2,.,NI, P(v) denotes the nxn transition probability matrix

.. ....
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(Pij(ul(i),.suN(i)). Note that the i-th row of P(v) depends only on

u(i) =.ulmi.uN(i)).

Over the long run, each decision maker incurs an expected cost

per unit time given by

JA(v) = lim E E f (x u(x ),.,uN(xt)); A-12,.,N (5.1)

The following assumption will be in force for the rest of the chapter.

Assumption A:

i) The admissible decision spaces U (i) are compact.

* - 2) The P are continuous functions.

3) For each i, (f (i,'): Ul(i)x..xUN(i) -]R; A-1,2,.,N] are continuous

functions.

4) For each ver, the Markov chain xt is strongly ergodic.

Assumptions A2 and A4 imply that for each vEr, there is a unique probability

row vector TT(v) = (Tl(V),.r n(v)) such that

TT(v) - TT(v) P(v); TT(v) > 0 (5.2)

furthermore, TT(v) is continuous.

It can be shown [39] that J (v) does hot depend on the initial

state and is given more simply as,

JA(V) = r(V)F () ,2,.,N (5.3)

where

FA(v) [fA(l,u(l)), fA(2,u(2)),..,fA(n,u(n))]'

. . .
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Futhermore, j ()is continuous by Assumption A. It is convenient to

introduce the generator

Q(v) -

ThenDQ(v)l =0; 1 -(~,,l'and 17(v) is the unique solution of
n n ~--

nn

The following result is well-known [391.

Lenua 5.1:

Let Assumption A hold. For vEr consider the linear equations

of~ )C £() CAR;£2.N (5.5)

i) If (aACA; A-1l,2,.9N] is a solution, then aA A()

ii) If tcCI £; A-l,2,.,N)t is a solution, then so is (crtCt8l;

Ainl,2,.,N) for every 6.

iii) A solution always exists.

Let Qi(v) be the i-th row of Q(v). It depends only on u(i). For any CA

let

reH (CA)v)= QMvCA + F (v); A-1,2 ,.,N (5.6a)

H (C£)u(i)) Q Q(u(i) )C£ + f (i~u(i)); A-l,2,.,N (5.6b)
A A .-
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5.3. Optimality Conditions for Feedback Nash and Stackelberg Strategies

* * We shall obtain the optimality conditions for the case N-2 only.

The optimality conditions for N >2 can then be obtained in a straight-

forward manner.

* Assumption N:

i) U (i) is convex; i= , 2 ,.,n; .L=1,2.

ii) For any C., H i(CA,u(i)) is strictly convex in u (i); i-1,2,.,n;,

Assumptions A and N guarantee the existence of the Nash solution.

For the Stackelberg problem we shall assume that DM-I. is the

leader and DM-2 is the follower. The following assumption together with

Assumption A guarantee the existence of the Stackelberg solution.

Assumption 5:

i) U2(i) is convex; iml,2,.,n.

ii) For any C29 2 (C2 -1u(i)) is strictly convex in u 2 (1;=,2,n

Let us consider the Nash solution first. For any (CC 2) define

(u Mi)Ck = uk)Uk (i): R (Ck u (i),_ M)

0 -i

uk(i) - Rk(u (i),Ck) A,k=1,2; 10k; i-1,2,.)n. (5.7a)

N i(C1,C) = H i(CA~u 0(i),u 0(1)); iinl,2.3n; A-1,2 .(5.7b)

The following theorem gives necessary and sufficient conditions satisfied

by the Nash pair.
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IE Theorem 5.1:

- Under Assumptions A and N, (vl,V) is Feedback Nash iff there

exist A(=1,C*); ,4,2) such that

*W* * *cl l = N (CiC2) = H (CA31'vV 2 )

Moreover, ae = JA(vl~v 2 ) ; =1,2,

Proof: Follows from Theorem 3.4 of [39] by holding v, fixed in DM-2's

optimization problem and vice versa.

We now consider the Stackelberg problem. For each announced

strategy v, Er 1 of the leader, the follower determines his response by

minimizing J(vlv2 over . The set of all such solutions

R(v) (v E r2 : J 2 (Vv2) < rain J2 (v1 ,v 2 )I (5.8)
v2 E r 2

is known as the Rational Reaction set of the follower. Assumption S

-mguarantees that R(v1 ) is a Singleton, and therefore, we have the unique

. mapping R: v, v2 . A strategy v, ErI is a Stackelberg strategy for the

leader if

Jl(v1,Rv,) - Jl(vl3Rv1 ) ; V v1 Erl (5.9)

The optimal strategy for the follower is v2 E Rvl . For any (ClC 2 ) define

r

......................... ...
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1 ((iC 2) ju2( E12('): K2 (C2 ,ul(i),u2 ())n min (Cli)
u2(i) E U12(i)H ( 2 u t )

u2 (i))]

o 1 -i
u1(1) -arg mini H1 (C1,u (),R(u (i)C2 ))

u 1 M F n (i)(

u2 (i) - i (u1 (i),c)

S,(CL " M. ,(i)) -1,2.,n; A-1,2. (5.10)

The following theorem gives necessary and sufficient conditions satisfied

by the Stackelberg strategy.

Theorem 5.2:

Under Assumptions A and S,(vj, v2  Rvl) is Feedback Stackelberg

if f there exist (CICA) ; Au1,2) such that

011 S (ClC2) = HA(C v,' 2)'

Moreover, a - JA(v,v 2) A-1,2.

Proof: i) Sufficiency:

Let there exist ((.A ',C)A 11,2) such that

"'aln  S I(C].C 2 ) - HA (CA , V1" 2 )

then,

,'vlY2)'Aln 0 A rr(2\,, v2) HA ( CLvl,,,v2)

.. (v1 ,v2) FA(vlv 2)

- Jt(vv 2 )

*
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For any v2 F.r 2 ,

Tr(vl~v2 )cv2I.n < Tr(vl,v 2 ) z 2(C2 'vlv 2J J2 ('vl'v 2 )

Hence, 012 -J 2 (vlv 2 ) J 2 (vl'v 2 )

For any v,1 F Er' 1 let

R13%,C) - f 1 ( 1 1,~,i (2),C ),..(ul(n),C*)]' Rv1

Hence,

Ot J1i(vlv 2) - J1 (v1,Rv1) J J(v 1,Rvl)

S(vl, v) is a Stackelberg pair.

m ii) Necessity:

Suppose (vl,v 2 -Rvl) is Stackelberg.

Let ;('A A=1,2) solve

An 1 Q 01Y 2 )CA + F A(vl, v2 ) H H(CAJvin A 11)

Therefore,

Le v E' 1  V -R~v,~ Rv be such that

H I(C lvlpv2) Sl(ClPC2) S *l

Therefore,

J(v") - 1-(vv) 1 1<l'2 a
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Since - J1 (viv 2 ), we should have equality above. Hence,

rrV1 V2) [SI(ClC2) -y c1nJ

Since -rr(v11v2) > 0 by Assumption A4,we have

S (Ci,* =cl

* Now, for the follower~let v2 Er' be such that

H 2 (C 2 9V1,v2 ) =S 2 (ClC 2 ) (X ~2n

Therefore,

J V* )H <
J2(v1 v2) - r'vl13 v2 rn2 (C2,vlv 2 ) - Y

Since = J(v 1 ,v2), we should have equality above.

Hence,

Tr (v 'V2)(S2 (Cl'C 2 ) - a12 Ln' =0

Since 1T(vl V 2) > 0 by Assumption A4, we have

S (C*,C 2 )-al

AI~though the above theorems have been proved under the strong

ergodicity assumption, it is believed that they hold even when the Markov

chain is simply ergodic. The proof for the necessity part without the

strong ergodicity assumption will be more involved.
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Let us define,

.A (C1.C 2) min S A(C 1 'C 2i

S A(C VC 2) -max S &(Cl'C2 )

i

then the following hold:

Lemma 5.2:

For any (C1,C) let (v 0v 0 be such that

S A(Ci9C 2) H A(CA3 vlv2) A=1,2

Then,

*(vi v2) is Stackelberg if S A(C1,C 2) SA(CuC 2) ; =1,2.

Proof: S A(CI1IC 2  CTT(v 1SY)SA(C 2) A J('v~Iv) 2 1(CIC 2 ).

if S A(Cu)C 2 ) - t(C1,C 2) S A(ClSC 2  = In= H A(CA~vl ,v2)

then (vl,v 2 is Stackelberg by Theorem 5.2.

* Lemma 5.3:

For any (C11C) let (vo, 0) be such that
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N (CIPC2) = HI(C v , v2) 4=1,2.

Then,

'.NI(C12C 2) : 1< Jh(V1 V 2) RI N (C  C 2 )  A=I,2.

-0 0

(V ,v2) is Nash if NA(C1,C2) NA(C,C 2)..

Proof: Similar to that of Lemma 5.2.

Notice that unlike the control problem [391, we cannot bound the

optimal costs (JA ; A=1,2) in the Nash and Stackelberg problems by the

quantities defined in (5.11). This fact makes it difficult to obtain

computational algorithms for the multiple decision maker problems along

the lines of control problem [39,40], as we shall see next.

5.4. Computational Aspects

One way to compute the Feedback Nash and Stackelberg policies is

to deal directly with equation (5.3) of the cost function. The Nash

solution can be computed by obtaining the point of intersection of the

reaction curves. The Stackelberg solution can be obtained by applying

the algorithm of [51] for static problems. A serious drawback of this

direct approach, which makes it computationally infeasible, is that we

first need to obtain the steady state distribution 1r(v) as a function of

v E r. This is very difficult in practice when the Markov chain is of very

high dimension and the admissible control sets UL(i) are uncountable.

SAn alternative approach which does not involve computing 1r(v)

is to work with dual variables CA and make use of the results of
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Lemma 5.1, 5.2, 5.3 and Theorems 5.1, 5.2. The policy iteration [52] and

dual variable iteration (39,40] algorithms for the control problem also

involve working with linear equations of the type (5.5) rather than

computing (v) and dealing directly with (5.3). k k

Let us consider the Nash problem first. For any (CiC 2) we findk k k' k k
;k and Vk from(5.7a) and N (CC) from (5.7b). We need to update Ck

1  2 12

such that

"" ":-- k k k k
*'; : lim [i(CA,C2) -g (ClC 2 )] 0 -l,2.

Then, in the limit,we obtain the Nash solution by Theorem 5.1

. and Lemma 5.3. Since we cannot bound J by N and N at every iteration,A A -A
k k

the algorithm of [39] cannot be used to update C1 and C2 . If we do use the

algorithm of (391 to update the dual variables, then convergence cannot be

guaranteed. But, if the algorithm does converge, then the convergent point

is the Nash equilibrium.

If it is known a-priori that the Nash equilibrium is stable [53],

then we can use the following policy iteration algorithm which converges

to the Nash solution.

Step 1: Choose (v E P2  ; ,2.

Step 2: Obtain vk+l by applying the algorithm of [39] to the following
A

* optimization problem.

* .. ~ k+ll [ ii Q( kk k+l k+l + ,k k+l A12 ; i'ny min )c + F£( j ) ; J,A-1 2 ; JOA

A n l vi A ,A 2 Vjs'VA
V l

Iv2
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Step 3: If v.l P5 v, then stop; otherwise set k-k+l and go back to Step 2.

We now consider the Stackelberg problem. By the very nature of

the problem we cannot have any algorithm based on policy iterations. So

any iterative algorithm has to iterate on either one or both dual

variables. Consider the following algorithm which involves iterating on

k k k k k k
both variables. For any (ClC 2 ) we find (V and SA(ClCl) from

k k
(5.10). If we can update (C,C2) such that

lim [A(cl.C) -(C(Cl.C2)] 0 (C'
k-s * A1

then in the limit we obtain the Stackelberg solution by Theorem 5.2 and

Lemma 5.2. Due to the same reason as in the Nash case, we cannot use the

k k
algorithm of [39] to update (C,C2 ) and guarantee convergence.

It is not poasible to ddvelop an algorithm based on updating the

leader's dual variable alone. But consider the following algorithm which

involves iterating on the follower's dual variable.

k
Step 1: Choose C2.

Step 2: Find

k k
fk(v1) - arg min Q(V, 2 )C2 + F

v2 e r2

k
Step 3: Obtain vk by applying the algorithm of [39] to the following

.7. optimization problem.

.: k k k k k k k k1 min Q(, f (V))C + F(V, f (Vi)) •
1 n I E[ 1  1

"'" kk
-Vi e
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k k k
Step_4: Find V2  f (v 1  and

(k) kk) k kk
2h(C) 1 Q(vv 2)C2 + F2 (V1 v2 ).

Step 5: Let (C2k) - max hi(C)

(k k
- (C2) min h )(C

i

Update C k _k+l such that

C2 -* C2

-(k+l k+l -k k
h 2  ) hC 2  < !h(C 2 ) - h(C2).

.k k
If h(C2 ) -h(C 2 ) < 6,where S is sufficiently small positive real

- - : number, then stop, otherwise

let k - k + I and go back to step 2.

k
It is very difficult in general to update C2 in the desired way

k k
because of the implicit dependence of h(C2 ) on v via steps 2 and 3. Due

k
to this dependencelthe algorithm of [391 cannot be used to update C2 and

guarantee convergence. But if we do have convergence, then the limiting

solution is Stackelberg by construction.

* :5.5. Incentive Policies in Stackelbera Problems

We shall now obtain stationary Stackelberg strategies when the

leader, in addition to knowing the current state of the process, also has

access to the follower's decision variables. Under such an information

pattern, the leader has a potential to force the follower to cooperate in

[1 achieving his global optimum. Due to the nature of the information pattern,

paten
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although the leader declares his strategy first, he actually acts after the

follower has made his move at every stage of the game [48]. We shall

consider such Stackelberg problems with one leader and N-followers playing

Nash, and give an algorithm for computing affine incentive strategy for the

leader which helps him achieve his global optimum. Player-O is assumed

to be the leader and players 1, 2,..,N are assumed to be the followers.

The following assumption is made to guarantee a solution to the

Cnew Stackelberg problem.

Assumption RS:

i) U (i) is convex; i=1,2,.,n; Z=1,2,..,N

ii) For any C , HA(C u (i), ul(i),.. uN(i))is strictly convex in uo(i)

and uA(i); i=1,2, ..Jn; A=1,2,..,N.

The leader's problem is solved in the following steps.

Step 1: Obtain the global optimum of Jo by solving

min min ... min (Vm3x) (5.12)

,vero viler I )E 0~v~) 1~ (5.12

This can be done by applying the algorithm of [39,40]. Denote the minimizing

solution by

A- [uA(l),uA(2 ),. . .Au(n)] ; *o, l,.,N.

Step 2: Choose the leader's strategy as

V o P [V- A- (5.13)
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qwhere

P - diag [PAl' P2' ; -l,2,.N.

* A°

This strategy has the open-loop value o - vo whenever the followers
are forced to play (vA - V. A-o,2.,N). Since (v) is the

, desired open-loop solution for the leader, the P are chosen such that the
A

followers' optimal reaction is *V - A; A-l,2,. N).

rx- Step 3: Solve the linear equations for ((a,C) ; A-1,2,.N)

in *v A vo, a**N ,1pl

A Qvx )C + Fvv.' .) A -,2.

Step 4: Obtain (PA; A-l,2,.2N] from the gradient equations of [50], which

p in our case can be written ass

. P.-u *H C A o(), (A l ,
* . uL u )

The leader declares to follower-A, Vo and (vj; J=i,.,N; j 0 A). Then,

follower-A solves the optimization problem

041 n- min {( (o' V", 0 -", Vv O+l"' J)c C Yl .., Y. A12,vv+l,..,N)).
*A A

* A
and obtains his optiaml strategy vA - A by applying the algorithm of

- [39,40].

Notice that the Stackelberg solution of this section is

computationally easier to obtain than the Stackelberg solution of the

previous section.

;o:
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5.6. Incentive Policies for Weakly-Coupled Markov Chains

Now we shall consider the incentive design problem in the

context of large Markov chains consisting of N weakly-coupled groups

of strongly-interacting states. Such models arise naturally in the modeling

of reservoir dynamics in hydro-scheduling problems [41,421 and queueing

network models of computer systems [46,47]. We shall assume that

transitions from each group are controlled by a single decision maker

having his own performance objective and the overall system is coordinated

by a leader whose objective is to optimize some global system performance.

The computational algorithm for obtaining the near-optimal policies will

be shown to exhibit multimodel features, i.e., each lower level decision

maker, in order to compute his near-optimal policy, need only know his

'local' dynamics and some 'aggregate' of the rest of the system.

Weakly-coupled Markov chains are described by the generator matrix

A + 9B [43,44], where A and B are both n-dimensional Markov generators

having the form -I
A B1

A2  B2

A B- (5.14)

Q9 N EN

with (A J-l,2,.,N3 being n -dimensional Markov generators.

Thus the Markov chain consists of N groups of strongly-interacting

states. The weak interactions between states in different groups are

modeled as multiples of a small positive scalar e.

"
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For the decision problem to be considered we have

I .i[u (n+..+n -+l),...*u (ni+..4n) A vo Cv1  N1.o o 1 0-o o VO' V'o

vi)m Eu (n1+..+nj..14l)1 ..SU (n+..+n~) ; J-l,2. 3N (5.15)

where, as before, player 0 is the leader and players 1,2,.,N are the

followers playing Nash.

* '-'The cost vectors of the decision makers are of the form

U~~~~~ f(a 1 l~u 2n)o(~l)u n+))F ( 2

----------------- ------------------------------------------
f /,I+u ( i ' ' o n + )

F (vo
A2 v2)

f A(n 1 n 2Iu 2(nn ) u (nn))

f ~N(n),(n-)

-j -

A-0O,1,2,. qN. (5.16)

The following assumption is made about the process.
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Assumption B:-

1) For all [v eIr.; £=Ol1,.,N) and 0 < a < 6 the Harkov process defined

by A + eB has a single ergodic class.

2) For each ver and v Q r, the Markov process defined by A~ v~j has

a single ergodic class.

Assumption B2 implies that each A (v~1 ~ has one zero eigenvalue.

The corresponding right eigenvector t iis the n.j-dimensional column made

of ones. The left eigenvector vrj(VjiVj is the -dimensional row of

stationary probabilities for the states in the J-th group when e-0.

Let,-d

t2 2

T I V(vo-'vlP-vN) 0

Q tN N (vN

:L"O

(5.17)

It has been shown in [44] that the n-dimensional probability

vector p of the Harkov process can be approximated by,

p ATiV +c) (5.18)

where is the N-dimensional probability vector of the aggregate arkov

.) %1

"': ttiayprowittiesera or Te sib in the nsthio beween differen

- -gr-ups0
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Let Tr(v, e) and n(,v) be the unique solutions of

rr(v~c) (A(v) + eB(\v)] -0 ; n(v,e)l -I,(5.19)

; (v) V(v)B(v)T -0 ; rr(V) 1, 1 ,(5.20)

where v =(v 0o v1I.)vN)

Then we have,

rr(v' E) = 1(v V(V) + 0(e) .(5.21)

For any given policy ver, the average cost per stage can

be approximated as,

0.0 TrTv,() F (\J)

rr1(v) V(v) FA 0) + 0(S)

J (v) + 0(a) ; A-0,l,2,.,N. (5.22)

J v is the average cost per stage associated with the aggregate chain

and

J (v) rr (v) F (v) ; £0,l,2,.,N. (5.23)

where F (v) -V(v)F (v) is the N-dimensional instantaneous cost vector

*1associated with the aggregate chain.
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We shall now obtain near-optimal policies based on the aggregate

costs j v.In terms of the aggregate dual variables C we can write

1LN V(v) BMvT CL + F (V)

=' J1 (; 0-~,,, (5.24)

Alternatively,

~L1  = ~v)[B(V)TC£ + FL,(v)I

-V(v) gl(v) ; £Ol, 8.N (5.25)

where

A O1 1 -V lV 1

91 ) 92(v10,v 2 ) B 2 o 2T + F 92 (V
2, V2) (5.26)

N BN N2- N
gm(v, V') BNVOvTC + FA \

Therefore, in component form (5.25) becomes

v1v9 ,Vg (v~v ; Ji,2,) A-0; 922. . (5.27)

Each component in (5.27) can be interpreted as average cost per stage

associated with the n -dimensional local chains with generators

A 
V
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p Hence, we can write

1An j j i(v, )C +g (vj ,vj ) j1,2,.,N -=-0,1,2,. ,N

j (5.28)

. . where CEi j are the dual variables associated with the local chains.

Based on the hierarchical structure given by (5.24)-(5.28)

- of the aggregate costs, we now formulate an algorithm to solve the

leader's problem.

" Step 1: Obtain the global optimum of J (v) by the following iterative0( scheme.

-ki) Choose C0

ii) Solve
k [A(vJ)C k j

(C )I mi EA )C +~ g ,vi)] j-1,2,.,N
oj 0 n VoLjj V rJV e

0 0 i

using the algorithm of [39,40]

iii) Find h (C-) -maxh (Ck0 0 oj 0
-k =

h (C-0 mi h (Cin )

--If h - h ( 0, then stop; otherwise update C by the algorithm of
If 0 () C0) C0 byteagrhmo

[39]; set k-k+l and return to (ii). Denote the optimal solution by

r vA ,o ; 0,1,2,.,N.

S.+o
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Step 2: Solve the linear equations

a 1 V(v)B(,j)TC + F (v)A N

UAn A 0 C A A

Step 3: Choose the leader's strategy as

VA Vn ~[ -vP P, diag (P ,P,.P]
*0 0 A A A A1 £ A2' An

and solve for P from the gradient equations

AA

A AHi(CCAAAvo VVAYi7 VAA(CV£oVoVv)

H C A A V V A A A A A ) c A A A 0

A=1,2,.)N

The leader declares to follower-A, vo and tv.;jl.N #J

Follower-A then solves his optimization problem by the following iterative

scheme.

=k
Step 1: Choose C

A
* . Step 2: Compute

h (C) k Ij* B(i$ )TC + F (

AJ ~ ~ A A k 0j A i

=V (V 0 V) i (v 0 V) ; J1,2,.3N; i#A.
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Step 3: Solve the local optimization problem

(C )l mi [Av)C k gk (; )
,.','.:h/. )In. m,,in [A (Vt oVP + g ,(Vo "V )]

m -applying the algorithm of [39].

Step 4: Find

h --max h (C-)A ~J A

hk) = -k
hA(C) mn hj (C),L:':.1

if h (C) h(Ck) A 0 then stop; otherwise update C by the algorithm of
A -- A A

[39]; set k-k+l and return to step 2.

When the algorithm converges, the leader's declared strategy

ensures that the followers' optimal reaction based on the aggregate costs

would be (VA = VA ; Af1,2,.,N}.

Let us now examine the saliant features of the algorithm

b presented above. Specifically, we would like to see what each decision

maker has to know about the system model and the costs in order to compute

his strategies. The leader, being the overall coordinator has to know the

full A and B matrices and the cost vectors of all the decision makers.

Each follower on the other hand, need only know his own local generator

* matrix AV the interconnection matrix B and the steady state distribution

of the other local Markov chains along the optimal solution. He need not

know the detailed dynamics of the other local Markov chains. This

ultimodel situation accounts for many practical problems where the 'local'_L
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decision makers do not have an exact knowledge of the 'global' model.

Note that none of the decision makers need to know the value of the

perturbation parameter e.

In the sequel we shall give a series of propositions which

establish the asymptotic properties of the multimodel solution given

*i above.

Let us denote the optimal Stackelberg solution for the full

problem as

The following proposition establishes the 'closeness' of the multirodel

solution to the optimal solution.

Proposition 5.1:

If the multimodel solution (v0, vl, v ) is uniquethen

i) Jo(v, v1, , ) - Jo(, v1, • , N) 0( )

ii) IV VA + 0(e) , £=0,1,2, N .

-2::iii J , • ,JA •, v ,,
iiVi) )v , 0() ; .6=1,2, ,N.

Proof: (i) and (ii) follow directly from [44] because the leader's

problem is a global minimization problem.

To prove (iii) we let

.. (V)- ) - .T6(V) - - * + S+ (V) - J(V*)

-v (V - + I - + --

_.36()- .6 vI, .6v)
4
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Due to (5.22) we have

-I M M) O(e)

I JA v) - J v)J -o0(g)

Due to (ii) and the continuity of the aggregate costs in the

controls we have IJA(v) - JA(v*)- 0(c).

Hence, (iii) follows.

The following two propositions establish the robustness properties

of the multimodel solution.

Proposition 5.2:

Letv =arg min .(V ,V1, • N ) ; ) Am1,2,. N.
• -vAEr A

then,

-) A AV A1 Ai N A ( o i N - , , I.,:.' .- i) 1, .l " w1,) " Jt(vo1 v1 ' " , v , " ' ) = 0(s2) ; £i=1,2,. ,

- i.e.; no follower can benefit significantly by deviating

--unilaterally from the muitimodel solution.

i) o I' k ( 0 " Jk(vovl "J I ' " v.) - O(e) ; k=0,1,.,N; k#A

i.e.; by deviating unilaterally from the multimodel solution, no

follower can hurt the other decision makers significantly.

Proof:

i) Since v, arg min i (v ,' v,, it follows directly

from [44] that

£2 -' A v f v) J o', AOE

Furthermore, v, =V + 0(e) ; =12,. N.
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ii G~(Ovl -j Jk ('vO v,.'* ~ ;k

- k(Vovl' * N) Jk(VOvo , Vl VI, *~ +0e

= (e) ,due to (i) and the continuity of the aggregate costs in

the controls.

Proposition 5.3:

Let (v1,v'2, N be the optimal Nash reaction of the followers

to the declared strategy v 0 of the leader; then

1) J 0 , 1  . V) o'vl'v2' 1)=O)

i.e.; the leader does not lose significantly if the followers,

instead of playing their muitimodel strategies, respond optimally.

ii) i (ov- . , ) -Jo(v*'V*, \N 0(C)

i.e.; the leader does not lose significantly by declaring his

uultiznodel strategy yo instead of his optimal strategy v 0

Proof:

i) Define0

i j J(Vol,*. ) ; £n,12 N.

By observing that [v2  ; 1, .,N) is the optimal Nash solution

for the followers with respect to the costs ; L12,* NJ;

and (v2  ; 2.,2, NJ is the optimal Nash solution for the

followers with respect to the aggregate costs ; A .,, NJ;

we can show by constructing matched asymptotic expansions as in (44]
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that

J (v1  *, ) =A(v 1, . A •2 ., N

• *- : furthermore, v. = + O(e) N1,2, • , N.

Hence, (i) follows because of continuity of costs.

"" "ii) follows from (i) above and (i) of Proposition 5.1.

S,.5.7. An Example

We shall now consider a numerical example of a weakly-coupled

Markov chain and obtain the near-optimal incentive policies. The example

" Lis motivated by the following hydro-scheduling problem for electric

power generation.

S .,Consider a hydro-power system consisting of a central reservoir

S- . .. which feeds into three local reservoirs. For simplicity assume that the

central reservoir feeds into the local reservoirs one at a time, and

-- switches between reservoirs in a random fashion.

When the central reservoir is feeding into one of the local

reservoirs, the other two reservoirs are assumed to be in some 'idle'

state. Each local reservoir is assumed to be under the authority of a

separate decision maker who controls the rate of water release ui for

electric power generation. The 'state' of each local reservoir is

characterized by its water level, assumed to be 1,2,3, when it is active,

and 'idle' when it is inactive. The central reservoir is assumed to have

- an infinite capacity. The local level changes are assumed to be of high

probability compared to the switching of the central reservoir between the
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different local reservoirs. There is an overall coordinator or leader

who controls the rate of switching and the inflows into the local 1
reservoirs. His decision variable is assumed to be u0 . The objective

of each local decision maker is to minimize his own local average

production cost per unit time, whereas the objective of the leader is

to minimize the global average production cost per unit time.

The above system can be modeled by a nine state Markov chain

consisting of 3 weakly-coupled groups of strongly-interacting states.

The states are as follows:

1 =(inflow into reservoir 1, level 1, reservoirs 2,3 idle)

2 - (inflow into reservoir i, level 2, reservoirs 2,3 idle)

3 (inflow into reservoir 1, level 3, reservoirs 2,3 idle)

4 -(inflow into reservoir 2, level 1, reservoirs 1,3 idle)

5 = (inflow into reservoir 2, level 2, reservoirs 1,3 idle)

6 - (inflow into reservoir 2, level 3, reservoirs 1,3 idle)

7 - (inflow into reservoir 3, level 1, reservoirs 1,2 idle)

8 - (inflow into reservoir 3, level 2, reservoirs 1,2 idle)

9 - (inflow into reservoir 3, level 3, reservoirs 1,2 idle).
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The system matrices are assumed to be the following:

-OO8 -0lu +O-lu O-08+O'lu -0lu, 0
£ 00

0 0O09+Olu 0-02ui -O-09-0-lu. +0*02u

0 0

Bi 4 (u) - 0lu i~j1-1,2,3i~

04 0  0-2 0

(u) 0 0 0 iJt,2,3 #ii 0 0P

0 0 0 -3u
0

BUu 0  -0-u 0O u <01-1 ,

00

Um (uA 0-05u < S0-2] A-1,2,3.

A-A
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The instantaneous costs are,

2 2 2f1 (n,ul(n),uo(n)) = (2-n) + 25(ul(n)) + l0(uo(n)) ; n-1,2,3

2 2 2f2 (n,uo(n),u2 (n)) - (5-n) + 30(u1(n)) + 10(u (n)) ; n-4,5,6

f3 (n,uo(n),u3 (n)) - (8-n) + 20(u 3(n))2 + 15(uo(n)) 2  n=7,8,9

I 3 )
2f (nu (n),u (n),u (n),u (n)) 1 (nu°(n),u (n)

0 0 1 2 3 3Z i 1 0(n 1~

Using the algorithm of the previous section, the near-optimal affine

incentive policy for the leader is obtained as

- (1) 0-067 - 05833(u1 (1) - 0-146)
01

u 0 (2) 0052 - 0.4762(u1 (2) - 0098)

u 0o(3) 0.046 - 06334(ul(3) - 0051)
. (4) 0071 - 0.5721(u2 (4) - 0-131)

02

Vo = Uo(5) = 0.066 - 0-4654(u2 (5) - 0.081)

u (6) 0-056 - 0.6142(u2(6) - 0-051)
02

u (7) 0-055 - 0.6518(u3 (7) - 0"164)
03

_%°Uo(8) 0.048 - 0.5532(u3 (8) - 0"112)

Uo(9) 0.044 - 07156(u3 (9) - 0-06)

L. J L



107

The optimal strategies for the followers' are given by,

U (1) 10-146 u2()a-3

V1 1(2)0-09 V2 u2 (5) - 0-081

u 3)0.051 U (6j 0*051

u (7) 0-164

v 3  3 *3(8) - 0-112

u3 (9) 0-06

The resulting costs (for -01) are given by

-076541

-075332

J 0-75884

1 0-75917

7.-



108

We now compare the near-optimal solution v to the optimal solution

for e 0.5, 0.1, 0.01.

0.052 -0.5133(ul(l) - 0.132) 0.061 - 0.5622(u 1(1) - 0.14)

0.041 - 0.4521(u (2) - 0.09) 0.048 - 0.4702(ul(2) - 0.102)

0.041 - 0.5964(ul(3) - 0.053) 0.045 - 0.6208(ul(3) - 0.051)

0.075 - 0.5548(u 2 (4) - 0.12) 0.072 - 0.5637(u 2 (4) - 0.124)

.068 - 0.4131(u(5) - 0.062) 0.066 - 0.4543(u (5) - 0.08)

0.052 - 0.5861(u 2(6) - 0.05) 0.055 - 0.6004(N (6) - 0.051)

0.066 - 0.6142(u(7) - 0.161) 0.058 - 0.6427(u (7) - 0.164)

0.051 -0.5091(u (8) -0.092) 0.048 -0.5324(u (8) -0.1)

.08-0.6634(u 3 (9) -0.053) 0.045 -0.6988(u 3(9) -0.055)

J 0.73718 Jo 0. 75012
0 0

J0o(v) -0. 78213 10(v) -0. 75917
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A

g -0.01

0.066 - 0.5848(u1 (l) - 0.144)

0.052 - 0.4814(u1 (2) - 0.1)

0.045 - o.6444(u1 (3) - 0.051)

0.07 - 0.5688(u2 (4) - 0.13)

0.068 - 0.4711(u2 (5) - 0.082)

0.056 - 0.6155(u2 (6) - 0.051)

0.057 - 0.6622(u3 (7) - 0.165)

0.048 - 0.5601(u3 (8) - 0.11)

0.044- 0.711(u3 (9) - 0.056)

0 = 0.74186

o(v) = 0.74212

The above numerical computations clearly illustrate the convergence

of J to Jo0 ) as e -0.

5.8. Conclusions

In this chapter we have considered the average-cost-per-stage

problem for finite-state Markov chains controlled by multiple decision

makers. After formulating the general decision problem and obtaining

certain fundamental existence results, we focused our attention on the

multimodeling problem for a class of Markov models consisting of N weakly-

coupled groups of strongly-interacting states. We have outlined a

_-.. .. .. ...-. . .- ...... _ ;..... ,..... ... . . .
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procedure for obtaining near-optimal incentive policies, which allows the

'local' decision makers to use different simplified models of the system.

Specifically, we have shown that each 'local' decision maker need only

know the generator matrix of his own local Markov chain, the generator

matrix describing the intergroup transitions, and the invariant measure of

the other local chains along the optimal solution. Only the coordinator

needs an exact knowledge of the 'global' model. The well-posedness of the

procedure has been illustrated by a numerical example.

... ,,
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CHAPTER 6

INFORMATION INDUCED MULTIM)DEL SOLUTIONS

6.1. Introduction

In the previous chapters we adopted a perturbational approach to

the multimodeling problem. The crucial issue was one of well-posedness of

the multimodel design. We had to establish the convergence of the optimal

solution to the multimodel solution in the limit as the perturbational

parameters go to zero.

L4 In this chapter we attempt to induce a decomposition of the

problem based on input-output considerations, such that the optimal

solution within a class of admissible strategies, can be obtained from

I multiple reduced-order models with partial noninteraction among the

decision makers.

In large scale systems, the DM's observe, in general, different

- variables through their individual objective functionals. These observed

variables play a crucial role in the solution of the problem. Here we

focus on the role of the observed variables in multimodel strategy design.

We attempt to identify the core by examining the input structure and the
* -,1

observability structure induced by the observation sets of the DM's.

In Section 6.2 we formulate the problem, and discuss the

structural decomposition and the class of admissible strategies referred

-. .. to as Structure-Preserving strategies. In Section 6.3 we obtain multiodel

solutions under FPS and FIS information patterns. In Section 6.4 we discuss

i-.. decoupling of completely observable systems. In Section 6.5, we discuss
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S•briefly extensions to many decision maker problems and Pareto games. In

Section 6.6, we study applications of the concepts to control of large

scale interconnected subsystems and multiarea power systems. Section 6.7

concludes the chapter.

6.2. Problem Formulation 4
6.2.1. The problem :

Consider a linear system controlled by two DMs,

i=Ax B uX(O) x

dim x = n, dim ui " mi, dim yi P

The variables yi will be referred to as the 'observation set' of each DM.

These are in fact the controlled variables as seen through the performance

:i index of each DM, and may or may not correspond to the actual system outputs -

available to each DM.

The performance index of each DM is given by

Ji(Y 1 ,Y2) - C (y + uiRiui)dt u (t) - ( ) ; i - 1,2 (6.2)
0

where 'i(') is the admissible strategy of DMi, measurable with respect to the

sigma-algebra generated by his information set (to be specified later).

4
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The DMs are to select optimal strategies * E r1 ; i - 1,2]such

S:"that
t * *

" (y*.yj) :5 J (yi,') V Y, E ri; ij - 1,2; 1 j (6.3)

where £ri; i - 1,2] are some admissible strategy sets for the DMs to be spec-

ified later. The pair of inequalities in (6.3) define the Nash equilibrium

point.

in large scale game problems, the'curse of dimensionality' may ren-

der any direct approach to the optimal solution computationally intractable.

Hence there is a strong motivation for the DMs to look for alternative ap-

proaches to the problem which ease the computational difficulties. The ap-

proach formulated in the sequel has the desirable feature that it induces a

partial noninteraction among the DMs leading to a lower order gazk This i3

done by choosing appropriate admissible strategy sets r based oa a partic-
i

ular structural decomposition of the system.

6.2.2. Structural decomposition

-. The observation sets of the DMs given by (6.1b) induce a certain ob-
servability decomposition on the state space. We propose to exploit this

decomposition to obtain multimodel strategies. To do this, we start by ex-

hibiting this observability decomposition explicitly by transforming the

state space. This may be done either by performing chained aggregation se-

quentially with respect to each DM's observation set [8,54,55]; or, equiva-

lently by making a similarity transformation directly, following a procedure

Ldual to the one in (56,61] where a controllability decomposition was achieved.

°..- , - A- L . .
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The transformed system is represented as,

XA+ B u u () ; (6.4a)

where
A 1 0 A 1 3  0

Am22 23

0 0 A 0
33

A41 A42 A43 A44

cinL 1  0 c 3  01

c2 [0 c 22 c2 0]

-'1

B 3

14j

and

F A~3

are observable pairs.
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The eigenvalues of [A-,;£ - 1,2) represent the modes which are ob-

servable only to DMi but not to DXJ (i 0 J); the eigenvalues of A33 represent

the modes which are observable to both the DMs; and the eigenvalues of A
44

represent the modes which are unobservable to both the DMs.

For simplicity we shall neglect the jointly unobservable modes. In

a well formulated problem these modes are stable and do not contribute any-

thing to the cost. Hence, from now onwards we shall assume the system ma-

trices to have the following form:

A 1 1  0 A 13

A" "0 A (6.5a)22 23

0 0 A 33

C1  (c11  0 C13 ]

(6.5b)

C2 -[ 22 23~

i -B i 1,2 (6.5c)
i 12

The input structure specified by the matrices , B 2 are not in a

form suitable for our analysis. We need to make input space transformations
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in order to appropriately overlap the input structure with the observability
decomposition. Assuming that the pairs £(ABil, (AiBi); i - 1,2) are

controllable, there exist matrices G1 , G2 such that the input space transfor-

mation tui - Gi~i; i - 1,2) gives the new input matrices the following form

[57]. - --

B11  B14  0 B21

B - B. G . 12 B2 B 2G2 " 22 "24 (6.6)

0 B 0 B2 3

where the pairs C(Aii,Bii); i - 1,2] are controllable.

Remarks: Before performing the input space transformation, we might need to

do another state space transformation; but this can be done without destroy-

ing the observability decomposition. This is to put the system in an appro-
-priate basis such that Z, - I R 9R e where Z is the state space and R is a

pr ebsssc ht 1 2 1is

controllability subspace of DMi. The input space transformations Gi identify

explicitly the control channels through which the individually observable

modes are completely controllable [57].

6.2.3. Structure-Preserving strategies

The system and the performance indices, after the observability de-

composition and the input space transformation, take the following form:

X A+ B^5 +Bu ;(o) -io (6.7a)
1 1 2 2

Y =i  i 1 1,2 (6.7b)

4o.
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"""-.: '"ji YY + u_'Riui)dt 1 1,2; (6.8)

" where - G RG We shall assume that

R 01

Ri -  >o ; ij- 1,2 ; i0j
"'" "e 0 Ell

The mature of the results obtained here hold for arbitrary positive

* definite i; but assuming a block-diagonal form results in simpler derivations.

Before we obtain the Nash solution, we need to define the set of.

admissible strategies for each DM. The admissible strategy sets that we are

particularly interested in here w1ll be referred to as 'Structure-Preserving'

. strategies and are defined below.

. .Definition: A Structure-Preserving strategy set is the set of all linear feed-

back strategies which preserve the observability decomposition (6.5) of the

closed-loop system.

In the single DM case, the three-component-control of [55,62] is a

Structure-Preserving control. After the first component achieves decoupling,

the second and third components which control the aggregate and the residual,

respectively, are Structure-Preserving. The design in [55] was purely from a

r "pole-placement point of view without any optimality considerations. Here we

*: ""shall show that in the multiple DH case, the design of Structure-Preserving

Nash strategies leads to multimodel solutions.

rq"

."f',' .. ,- ,, .. , . : ..-- .. . ' . * . - - . . . . . . - -. - -. . - . . : . - - . : • "
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6.3 Multimodel Solutions

We shall consider two types of information patterns for the DMs:

the Feedback Perfect State (FPS) and the Feedback Imperfect State (FIS).

Under the FPS information pattern, each DM knows, at time t, the current

state of the system, x(t); and under the FIS information pattern, each DM

knows, at time t, only the current value of his observation, y(t).

6.3.1. FPS information pattern

Under the FPS information pattern, the admissible strategy set

of DMi is the set of linear state feedback strategies which are Structure-

Preserving. Specifically,
rF a8 F

r i - [ili() -Fi= - o; i 1,2; (6.9)
":. 0 F31 13

where 8 is the Kronecher delta. i
Now, to find the Nash solution, we need to find a pair i E ri ;

i - 1,2] such that the pair of inequalities (6.3) are satisfied. Sub-

stituting u i - vi(x) front (6.9) in (6.7) and (6.8) we get

x =m -x ; () o (6.1t0a)

-l = (6. l0b)

J, = oi ; i=1 1,2 (6.11)

where

Qi"C i + F iFi ; i1 (6.12)

.............. l
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and the closed-loop system matrix is

" " 11 F11) 0 ( 43" 311F 13- B14F3 1-B21F32)

- A A-B 1 F1 -B 2F2 - (A 22" 2 F22 ) (A23-B 22F23- 24F 32 " - 1 2F3 1)

0 0 (A 33  B 131F13 B 23 F32 )

A11  0 A11 ,13

A 0 A A(6.13)
- 22 23

0 0 A33-. 3

£ The optimal solution F ,., F1 ; i - 1,2) will depend in sen-

eral on the initial conditions jo (58]. To remove this dependence, we fol-

low [58] and assume that the initial conditions are random with

N > 0 , (6.14)

S "and modify the cost functionals to be

Ei j Ij(i'Q1 )dt ];i L,2 .(6.15)

xo 0

'* : Introduce Mi, M2 , L E JlR defined by

R :lMI (x QL )dt; i 1,2 (6.16)
0

L - E((t)i'(t)]dt (6.17)
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For any given pair (F1,F2  such that RekCA) < 0, Mi.? 0 and L > 0 satisfy

the matrix Lyapunov equations

M±A +A'Mi±+ Q± 0; 11,2 (6.18)

LAV +N -0. (6.19)

Partition Mi. L, N appropriately

M11 M1.2 M13

M MM (i) (i)1 1,(62a
i 12 N22  123 ; i12(60)

(i, (i)' MM13 N 3  i

L11  L12  L13  N11  N12  13

I I

12 22  L23  12 22 23(62b

L 13 L2 LN3N-

L1 3 3 ;2  3  3 33

Applying the Matrix Mini-u Principle [59], the optimal Fri F~ Fi for the
* 33

Feedback Nash solution can be shown to satisfy (for i~j -1,2; 1 0 J)

Rt F* L +~ F~L ~ML BIM±L L (6.21a)

R~ F L + R F*L IM (i) L BiiM(i)L -0 (6.21b)
iii 3 iii31 033 BiiiU 33 iii i3

RF - BM B ~ i ~ B MiL 0(62c
ijFi 3± 3 ±33 i3 -±333 L33 i4ii') i i4 i3 33 (62c

By an abuse of terminology, we shall refer to the solution as

it does not satisfy the Principle of Optimality. It is Nash in feedbackA
information pattern.
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* where

() (M) MM1  0 (6.22s.)

'A ij A'J '+ +CC - F R (6.22b)

M*( + .()) + A -C + F* R F*---0 (6.22c)

11 3 £ 33 + UM 3  -113 £11-3

:,~ ~ M (() 4 ,.t.
-33 33 +A33 M33 £3 A0+ A1 3  + COCO

.,. F. +F*R ~F~* -. 0 (6.22d)
31i3 3-J31

A + A 3 L3 3 + Li 3 3 3 + N13 - 0 (6.23a)

A* L + +N -o (6.23b)

SA3L33 33  33

• -i; *F a. **(Li, A 3 9 A3 3 ; £ 1,2)areas in (6.13) with F331  F1 3  F 3, F3 1 UF;

1 - 1,2). Solving (6.21) we obtain,

F" 1 UM( i )  (6.24a)

, -I ,11113 (6.24b)

. " -3 1 3 Y3 + V LB '( )+ M (6.24c)
F3U R .1 B OIN3 + ML L 331 Rji4LMi3 Mi 3

Notice that even though equations (6.21a) and (6.21b) are coupled in F and
and

.. F1 3 , we are able to solve for them explicitly as in (6.24a) and (6.24b).

This fact plays a crucial role in showing that the Nash solution admits a

Upartial noninteraction. Substituting (6.24a) in (6.22b) we obtain,
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M!) + .. (+- - M(i)B -1 6, M 0 ; - 1,2 (6.25)

ii ii -iii Ciii ii iiitij 25)

Lii " .

It can be readily seen from (6.24a) and (6.25) that F* is the solution of

an optimal state regulator problem with parameters (A ii ii Cii, Rii).

The following proposition highlights the multimodel nature of the Nash

solution.

Proposition 6.1:

Given the linear system (6.7) controlled by two DMs, and their

performance indices (6.8), the design of Structure-Preserving Feedback i
Nash strategies under the FPS information pattern, leads to two low-order

coupled optimization problems defined by

min J E £ 7 + ZjRui)dt3
ui Zio 0

subject to

"-.[Fii F i

ui, "i (z) d " zi":'' 'i"0 Fi U,.

where - j
A A -EiF B B

" + z ; (0) zio
0"A 3 3 - 3F3j 0

Y" (' " i '60]zi
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- Nii 1 1
-
:'2._  E[Zi zjo - L

iJ i,2; i #J

wi The solution to this pair of coupled optimization problems admits partial non-

interaction among the DMs, and is given by the set of equations(6.22).6.25).

At this point we would like to remark that the controllability-obser-

vability of the triple (-Aii' SOI £ - 1,2) guarantees

Re X(A) < 0 ; i - 1,2 (6.26)

*"q 3 For the solution to be well-defined we need only to verify that Re X(A 3)< 0.

The coupling between the optimization problems of the two DMs is due

to the presence of the control gain F3j of DMJ in DMi's low-order model. Par-

tial noninteraction is achieved because each DM can evaluate his control gain

independently in a decentralized manner by solving equations (6.24a) and

* (6.25). The control gains (F13, F*; i - 1,21 are then obtained by solving the

* coupled set of equations (6.22c-d), (6.23), (6.24).

Hence, we have succeeded in identifying the 'core' of a high-order

Sgame problem where the DMs actually interact, and a pair of low-order control

problems, one for each DM. This has been achieved by restricting the admis-

L,

........
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sible strategy sets of the DMs to Structure-Preserving strategies under the

FPS information pattern; and transforming the state space and input space ap-

propriately.

Notice that F iiis independent of the statistics of the initial

conditions since it is obtained from (6.24a) and (6.25). But IF F
1~3 p U3±

i - 1,2] do depend, in general, on the statistics of the initial conditions,

as they are obtained from the coupled set of equations (6.22c-d), (6.23),

(6.24), which may be difficult to solve in practice. The gain matrices

LF3  ~i ,2 hc rsl n L 3 =0; i - 1,2) are of particular

interest, as they are computationally simpler to obtain. Such a set is

given by

- iB N , (6.2 7a)

F [B M j 2- M(1)+ M 62b3i ij 0333 i41 ~3 0 ~ , 62b

Her M q M M satisfy the coupled set of equations (for i~j -1,2; 1 J~

M (~l + M~)C + X' M+ CI C - MM Mii 0 3 33 iii3 i11 0 i iii3

- i) M_ M~i S MM M Mu) M~i MMii ± M33 11 i4i 0 I 11 i133 11 §ji J3

M (i) M(L) xj(iL) MM Q MA - 0 (6.28a)i30 i3M33 M 3 Sii ±3 0 j333 0i3 Jj3



Ii 125

M_ ~ (i + M i)~+ M ~i~S M£)M(M ()M
N3)A33 +A33 33 3 " - C±3±i3O3 3 ±333 33 ii3

M .  (i).(1)o M (j )s  M M()(i)

0 1 33 33 3 3 3 J333 "33 SJ13 J3 j"33

1) M () M) MM) ()' 0(S )
0 -Mi3 0 -3W 3 M63 ji"33

Mg (J ,(i)_M(L)S M(-) (J)W'3 M, 0 (6.28b)• 33 Ji 3 3 JiJ3 J3 Jii30

where,

S1  iB±R±Bj±; S B3 B 1.3 jBj Si BijRiB
=Bii iii£ S3

r
S B- Ai BRji-B~4  A B A A.4

S14 14 4LJ W14ij £3

Furthermore (F*3 y F3; i 1,21 are such that

* + N 0; i 1,2 $ (6.29)
£333 3

- where L33 is the positive definite solution of (6.23b).

Notice that if the initial cross-covariance N 3 - N23 
= 0, then (6.29)

is satisfied if and only if A13 " A2 3 - 0; which would be true if the solu-

tion of (6.27) and (6.28) block-diagonalizes the closed-loop system.

* . 6.3.2. FIS information pattern

It can be readily seen that when the output matrices are of the form

givenby (6.5b) Structure-Preserving strategies involving only static linear

. output feedback do not exist.

[2
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When the output matrices split so that there are separate observation

channels for the individually and coumonly observable modes, i.e., when

C, i 1,2 ; (6.30)

0 0 C

linear static output feedback Structure-Preserving strategies do exist, and

belong to the admissible strategy set r' defined by,

S ii(Yi " Fiyi - 0 i -1,2 (6.31)

Substituting ui (Y from (6.31) in (6.7) and (6.8), we get

x - AR; R (0) = (6.32a)

Yi " i (6.32b) j

S)dt; i - 1,2 (6.33)

where

i+  R 1,2 (6.34)

and the closed-loop system matrix becomes ,
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(A ~B11 ~ 1 ~ 0 (A1 3 B1 3 B1 1  3  1 C- 2  3 2 2 3 )1J3.

." .. ,

222) (C-3" C1  
3 23-  2F3 1C1  3 )

I+- " 0 (A 2 2" 2 2 F2 2 C2 2 ) (A2 3 " +22 2323 2F22"1231 )

0 0 (A33 - F-CB3 -C

A 1 1  0 A 13

F A 0 22  '23 (6.35)

0 0 "3 3

Define M1, M2 and L as in (6.16), (6.17), and partition them as in (6.20). For anyhi given pair (F1 9 F), such that Re X(.) < 0, Mi .? 0 and L > 0 satisfy the

matrix Lyapunov equations

M. + i'm + Qi W 0 ;i ,2 . (6.36)

AL + LA' +N 0 (6.37)

Applying the Matrix Minimu- Principle [59], the optimal Vi for theL i 13' 3
Feedback Nash solution can be shown to satisfy (for ij = 1,2; i # J)

.



128

F *-L F*L' C" A1B DrI(J)T L£3M(J (.3a

M. M

F Ri [ i3 L33OB £ 3 33 Bjj L i ! iN L£] O3OiJ

,C + -, , ' rI() -, -M~L C (.8) :

x [CE3L3 3C 3  (6.38c)

where

M i) M(£) - M(i) =0 (6.39a)
ij jj J3

i + A i*M i+ Ci (I +FR iiF .i)c. - 0 (6.39b)i~ ii ii +  -iii -- -iiiiii i

1 0 M0' A33 Ai(i )-- Ci(i + R i 1 C* i 3 0 (6.39c) .!'-"ii £'3 £ "3 "33 + £ £'i~3- ££i i-Y3i3•

~I

AM)((i). , ) A.,M(i), v (I + M (iRii M
" 33 A 33 3333 + 3 Aj3 + i3i3 £3 01 3 0

+ F F 0 (6.39d)

A LL+±Lj ~jj A£*+ 13 3A13 + + i 0 (6.40a)

A L~ 3 + Li+ ' 3 " + N 0 (6.40b)

A* L +L *N =0 (6.40c),
33 33 33A33 N33

= I
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- tAji, A~ 3 , A33 ; 1 1,2] areas in (6.5) with £Fil - F F 3

i; i - 1,2). The following proposition highlights the multimodel nature

of the Nash solution.

Proposition 6.2:

Given the linear system (6.7a) controlled by two DMs, their observa-

tion sets (6.30),and their performance indices (6.8), the design of Structure-

Preserving Feedback Nash strategies under the FIS information pattern leads

to two low-order coupled optimization problems defined by

i-n i "E o(yii + uiiui)dt
i Zio

* ~subject to F3

.%~ -.

i i(yi)- Y* i

m where

-. . 0

A 3 "j. 3jcj3 A B.,

33 z z(O)
: . 33" j33jj3 o£;3

12
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N ii N 0

E(zii[Zo Z1o.1 :
N3 N3

ij - 1,2; 1 # j

The solution to this pair of coupled optimization problems 
is given by the

set of equations (6.38)-(6.40).

Now, unlike the earlier problem of Section (6.31), we need to verify that

Re X(A*) < 0; i 1,2,3

for the solution to be well-defined. Also unlike the earlier case, the Struc-

ture-Preserving Feedback Nash solution of Proposition 6.2 is completely inter-

acting. This is essentially due to the fact that equations (6.38a) and (6.38b)

cannot be solved explicitly for F* and F Another significant difference
ii i3

is that now all the optimal gains (F1±,F13 , Fis i - 1,2) depend on the

statistics of the initial conditions.

Partial noninteraction results when (L 3 - 0; i 1,2). In this case the

optimal solution is given by (ij - 1,2; i # J)

L B M ( - (6.41a)

F -iilBoiM(i)L iL (6.4lb)-. 0 1i3 0iil 33T 13 13 33T!3)

F .l + * ((-t. Ll (6.41c)
3 J 333 333 i4i3 -' M( 33Ti3 ]i 3 33Ti34

id%

. ... . . . . . . . .. . . ... .. _ L .l .t w I l ~ ,'. i .ar . i-
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" .(i) 1 (i) M (1) are obtained from (6.39) with the control gains given by (6.41)
i1 .3 0 33

L33 is obtained from (6.40c), and Li is the positive definite solution of

AiiLii + L iJi + Ni 0 (6.42)I-,
Furthermore 3Fiy3 F3; i - 1,2] are such that

AL + N 0 i 1,2 (6.43)

Now Fi is first obtained by each DM independently on solving equations (6.39b),

(6.41a) and (6.42). This is the optimal solution of an output regulator problem

with parameters (A iBiiCliRii.Ni±) [58].

In cases when the output matrices do not split as in (6.30), the FPS Struc-

ture-Preserving Nash strategies of Proposition 6.1 can be synthesized as feed-

* back strategies using dynamic observers.

We let,

F Fii F 0

[ , ( ) " 1 1,2 (6.44)
;'.0 F3

where,

AA 1 3  BJ .F3 J Bu. Bi4
A U ij * 1 -

" + 0-+ K z

0 . A3 3  3 F

SiJ = 1.2; i # j (6.45)
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(F F F 1 1  1,2] are given by equations (6.24), and K~ is the observer

* gain to be chosen by each DMC.

Notice that the dimension of the observer of each DM is equal to the

Ndimension of his own observable eigenspace, which is all be needs to recon-7'

struct in order to implement the FPS Structure-Preserving strategy.

Defining ei M z~ - i we get,

Ai31 3j u lC3

ei e ~ ~C 3  i Ki [:
-Ac ; iji1.2 1 0 (6.46)

ii

A 1
Re X(Ai < pi- >0; i1 1,2 (6.47)

then we can write,

Re X(A i)<~ 1 1,2 (6.48)

Hence, by making the observer dynamics arbitrarily fast, we can represent the

error system as a stable singularly perturbed system i.e.; ei- as 0.
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Rewriting the composite system and the feedback strategies as,

- Ai +

(6.49)
= Ajet ; i = 1,2.

F- 6L iit2 F* _F F

Y F - +.Je; i - 1,2. (6.50)
0 0 F31 J  L UJ

Since e, -- 0 as p, 0, yi(i,ei) converges in open-loop to a policy having a

* unique feedback representation, which we denote by yf(); and

_f
-. (i) - y*(x); i - 1,2 (6.51)

where (yI(i); i - 1,2] is the FPS Structure-Preserving Feedback Nash strategy

of Proposition 6.1.

Due to (6.51) and the results of [251, we have

A in ( 1,y2 ) , Jp(7,y2) ; i - 1,2 . (6.52)

It is to be noted that (6.50) is noc the Feedback Nash strategy for .the system

(6.49) and the performance indices (6.8) within the class of admissible

strategies ri defined by

iii

r Yt , ai(i,) - +
00 F 31- 10 F U.

FF 0i ::j 1[i ::7
= - 1 Ki fixed); i =1,2 (6.53)

0F31 -
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The Feedback Nash strategy yA E will in general depend on the choice of the

- observer gains Ki. We do not compute yi because the strategy yi given by (6.44),

or equivalently by (6.50), has the property of being near-equilibrium and

asymptotic Nash [201 as established by the following proposition.

Proposition 6.3:

The strategy - i(Fei) given by (6.44) (or (6.50)) is near-

equilibrium and asymptotic Nash within the class defined by (6.53). That is,

Aim ( ,j) - (i,)- 0; VY E r i,j = 1,2; i j i

0. - 1

and,

Aim i( iYj - Ji(yYsj) 0;

V yj E rj such that <( i,( <5 ,y) ; i,j - 1,2 ; i A j.

The proof of the above Proposition follows readily from the results of 4

Chapter 2.

6.4. Decoupling of Completely Observable Systems

In situations when the whole system is completely observable through the

observation set of each DM, the 'core' is the full problem itself. But in

some such cases, if the DMs have access to all the states then the observa-

bility decomposition can be induced by using state feedback. The role of the

decoupling control in reduced-order modeling has been studied in detail in

[62]. Here we shall outline the procedure for multiple DM problems.



135

Suppose after appropriate state space, input space and output space

transformations, the system can be put in the following form [62],

A 11 12 13 11 14 21

X A A i 1+ 0 B u + B B - (45a
21 22 23 12 1 22 B24  u2  (6.Sa)

A 31 A32 A33 B13 B23

f, CCl1 0 C 13 J1

- r 0 -22  

(6 .54b )

with i,"B±3, i - 1,21 being square and nonsingular.

U Now if the DMs use the following strategies,

0 0

2
1 F ] ; K+ u

2  
(6.55a)

-B li3l 0 0

(A 0 0

"". ' '2 i+ (6.55b)

L0 B 2ik32 0

then the resulting partially closed-loop system has the form,

- -. -
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A- BBA 0 A B B 0 B
11 1413A31 13 11 14 21

-- - --1- -*+o - l-BAA 0+ B+B B
xA 2 2 "242A32 23 +12 1 22 24 U2

0 0 A3 3  0 B3 0 B2 3

(6.56)

It can be readily seen that the system (6.56), (6.54b) has the desired form

of (6.7). Under appropriate assumptions, Proposition 6.1 can be applied to

design u1 ,U2 as FPS Structure-Preserving strategies.

It is significant to note that making the dimension of as large as

possible results in a 'maximally-decoupled' system i.e.; a system in which

the decentralized control problems are of the highest possible dimension, and

consequently the 'core' problem is of lowest possible dimension (62].

.- The use of decoupling control introduces a degree of suboptimality if

the performance indices are chosen a priori. This is because the decoupling

control is chosen from a purely algebraic point of view without any optimality

considerations.

We would like to remark that the use of decoupling control requires a

degree of mutual cooperation among the DMs. This cannot be guarenteed under

the noncooperative Nash concept in general, unless, the resulting advantages

* .constitute a strong enough incentive for the DMs to compensate for the per-

" - formance loss resulting from the use of decoupling control. But, within a

cooperative framework, the use of decoupling control can be readily ensured.

. . . . .
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ft In problems where there is a need for the DMs to use the decoupling

control, it will be more appropriate for them to choose their performance

indices with respect to the strategies uj after the decoupling has been

achieved. Again, this is easier to ensure in a cooperative framework than

in a noncooperative framework.

Hence, in situations when the decoupling control has to be used,

a semicooperative or cooperative framework is desirable for the application

of our techniques.

6.5. Extensions

In this section we shall discuss briefly, extensions of our ideas

to many DM problems and cooperative Pareto games.

6.5.1. Many decision maker problems

In situations with more than two DMs there is more than one way to approach

W the problem; each approach resulting in a different order of simplification.

Ideally one would like to identify the individually observable modes, the pair-

wise observable modes and so on; and overlap appropriately the input structure

of each DM with this observability decomposition. The design of Structure-Pre-

serving Nash strategies would then lead to the solution of low-order control

problems, problems where two DMs interact, problems where three DMs interact

and so on up to the core problem where all the DMs interact.

. In the three DM case the (A,C 1 ,C 2 C3 ) matrices in the observability decom-

position form will look like

[.4
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A 0 0 A .0 A A
1114 16 17

0 A 0 A A 0 A22 24 25 27

0 0 A 0 A A A
33 35 36 37

A- 0 0 0 A 0 0 A
44 A47

0 0 0 0 A 0 A
55 57-

0 0 0 0 0 A A
66 67

0 0 0 0 0 0 A77

C- [C 1 1  0 0 C14  0 C1 6  C17]

C2  - [ 0 C2 2  0 C2 4  C2 5  0 C2 7]

C -(0 0 C 0 C 37
3 33 35 C3 6  3 7

It can be readily seen that the number of blocks to be identified in the sys-

tem matrices grows exponentially as the number of DMs increase. Hence for a

large number of DMs such a decomposition may be difficult to achieve in prac-

tice. The other extreme would be to identify only the modes observable by

each DM alone, and consider the rest as conmonly observable modes. This will

result in only a first order of simplification because the core problem will

be of a higher dimension. Of course in practice, depending on the problem,

any approach in between these two extremes may be adopted, resulting in dif-

ferent orders of simplification.
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* .6.5.2. Pareto games

Multimodel solutions to cooperative Pareto games based on the structural

decompositions of Section 6.2 can be obtained in a straightforward manner. To

illustrate this point we shall give below the Structure-Preserving Pareto

strategies under the FPS informat.on pattern.

Define the overall system cost as

2
J- i~J. ; 0< < ; 1+ 2l (6.57)

Applying the Matrix Minimum Principle, the FPS Structure-Preserving Pareto

strategy Y;(.) E ri , defined by (6.9) for the system (6.7) and performance

index. (6.57) is obtained as (for i 1,2),

F* R- (6.58a)
Fii ii Mii

F ^ -I (6.58b)

-RF iB +- M 3 + + LL (6.58c)
3i ij iB 0 133 i 3 i34 iiO i3L33

where

Mi i + - MiBiRi i - 0 (6.59a)

A A* + -*' - (6.59b)

HA 3 + Mii 33 + Ai 3 + CitCi 3 + FiRiiFi 3  0

+MA +A*' + E of(M'A + *~, + *F *
a.33 33 33 i-I ii 3 Ai~i3 iOC3 iU iii*3

+ C1F31 R 12F3 1 + a 2F32R21F32  " 0 (6.59c)

.

.. I
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A* L + * L + L * + N 0 (6.60a):.. ii~i U U 333+ "iTA33 Qi

A* L + L *'+ N 0 (6.60b)33 33 33A'3 N33"

The controllability-observability of the triple 2(Aii,Bii,Cji); i - 1,2) guar-

-- antees (Re (A)< 0; i = 1,2). For the solution to be well-'defined we need

only to verify that Re X(A 3)< 0. The solution given by (6.58)-(6.60) has fea-

tures similar to the Nash problem of Section 6.3.1 (like partial noninteraction).

The Structure-Preserving Pareto strategies under the FIS information can

be obtained in a similar manner. The solution will have features similar to

the Nash problem of Section 6.3.2.

6.6 Applications

Now we shall examine the applicability of our design methodologies to the

control of large scale interconnected subsystems and multiarea power systems.

6.6.1. Large scale interconnected subsystems

Consider the large scale system wherein each subsystem is controlled by

one DM having his own performance objective. The system considered is of the

form

A x  + E A y + Biu (6.61a)
iii j i -j i

j #i

Y r,.xi ; i = 1,2p . N (6.61b)

.-
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where the output variables yi are the interconnection variables. The above

problem has been considered in [55] as a single DM problem. We shall demon-

strate that when viewed as a multiple DM problem, the techniques developed in

this paper can be applied for optimal strategy design.

For simplicity we shall consider the two subsystem case (N-2). As in

(551 suppose that each subsystem is transformed with respect to its own output.

The transformed system can be represented as

• i(1) (1)  F 1lF2 -- ..
Yl F 11 F 1 F 0 y1  Gi 0

() ,(2) 12xF~ 1  F~2  F 12xG
r 21 22 r xlr 12

S- ---- -------------- ------- + ---- u + ---- u2  (6.62)

- 21 0 ,(2) F (2) 0
'2 11 12 Y2  022

I 2 1  0 F,(2) (2)
M2r F r 02F 21 22 '2r 0 G21

By a simple reordering of variables (6.62) can be written as,

K1 F 1x* 0 : F 1  F1  x G 0Ir 22 F21 r lr 12

(2 ) 21 (2)
* 2r 0 F22 Fr 21 x2r 0G21

=----------...... eeeee............ + .... u 4 u2 (6.63)

YF 0 F 2  Yl G 1  0
12

" F(2) 21 F(2)
" 0toF2 F Y2  0G22

L Now, by making an appropriate input space transformation[55] and letting DMi use

his own residual state feedback to cancel the terms F(i)x we obtain a system

which is in the familiar observability decomposition form. The interconnection
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variables yi represent the variables observable by both the DMs, and the resid-

ual variables xr represent the variables observable by DMi alone.

Suppose DMi chooses his performance index as,

SS 0(YiYi + XrQXLr + ui )dt ; 1 - 1,2 (6.64)
20

where, u, - decoupling control + u then, assuming that each DM has access to

all the interconnection variables and his own subsystem variables, Structure-

Preserving linear Feedback Nash strategies Gl can be generated from multimodel

solutions of Proposition 6. 1.

6.6.2. Two-area Power system

This example has been considered in [55] in the single DM context.

Here we shall assume that each area is under a different control authority.

We shall first transform the system into our desired form given by (6.7),

:*,..'and then obtain Pareto strategies on solving equations (6.58)-(6.60).

A two-area power system with each area containing two thermal

plants is constructed from [60]. The system is modeled by

, Ax+B u, +Bu
11 2 (6.65)

Y Cix ; il1,2

19 2 2 2 2
where x E R, u1 ER, u2 E R, ylR , Y2 E . The state, control and out-

put variables are defined in Appendix D.

The system matrices are given by,
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A0 A~1  0 0 0 0
" .113

. A A 0 0 0 0
22 23

AM A(')  -0.1124 -0.083 0 0 031 32

A-"0 0 22.21 0 -22.21 00

o o 0 0.083 -0.11.24 (2) A(2)

31 32

0 0 0 0 A (2) A (2) 0
13 11

0 0 0 0 A(2) 0 A(2)
23 22

-2 0 0 0

.2) (1) (2) 4.75 -5 0 0

AM A(2)- AA2 2  2) 
11 11 22 0 0.167 -0.167 0

0 0 2 -2

.... (1) ,(2) 4(1) A(2)
A- - - [-4 0 0 01'A13  A1 3  23 23

() A(2) (M1) (2)
A -A'-.-". .4.31 31 32 - A3 2  - [0 0.01 0.0093 0.014]

I

p:?...
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B~- 0
11 ~(1) lx0 B 22

1 ------------------- ; 2 B 2

0 11
l1x2 02

0 B 22

4

B(1 B ( 2 ) B ( 1 ) B~2
11 11 22 = 220

0

0~~

1 01
C 0 0 C4

2x8 29 2 29 02x

-~ 0 1 0..- - -------1
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0( G 1 ) G(1 0 0
0 G'

0 0( ,)o iF + 0 0 1 G G 1' 11 F23 ;2 [11 1

3 1 F32 F 3 3  ;3 0 0 G
iiL ::- 1 2

X 2 E ; 3 E R (6.66)

where

-5 4.75 0 0 0 0

0 -2 0 0 0 0

0 0 -2 2 0 0
FM ; 1-1,2

0 0 0 -0.167 0.167 0

0 0 0 0 -5 4.75

-:00 0 0 0 -2

-0.1124 -0.083 0 1 0 0 0

22.21 0 -22.21 0 0 0 0

0 0.083 -0.1124 0 0 1 0

F -33 0 O 0 -2 1 0 0

-0.38 0 0 0 -0.167 0 0

0 0 0 0 0 -2 1

0 0 -0.38 0 0 0 -0.167

. - °~.ll
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04x6 0

-- 6x6
F31(l) 32

2 F 32

F (2)
02X6 2

F [0.136 -0.222 0 0 0.136 -0.2221 ; i=1,2

F13 [o 6 3  D 6x 3  : F2 3  "[o 6 W D  0
6x l ]

D [0 -4 0 0 0 -4.]

Gl - [ 0 -4 0 0' 0 4] ; i=1,2

G12 [0 4 0 0 0 0] ; 1=1,2

G - [0 0 0 0 0.19 0 0]

G32  - [0 0 0 0 0 0 0.19]'

Now we need to apply a decoupling control to cancel out the terms

F31 32n (6.66). The decoupling control is chosen to be,
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-() [-0.716 1.168 0 0 -0.716 1.1681 j 2  -1.2. (6.67)

Substituting (6.67) in (6.66) we obtain,

x (1) 0 FGM 1  GM1
111 13 1 11 12

0 (2) Fp 0 (1)-0 11 23 Z 2 + 0 0

x0 0 F 0 G
3 33 31

(6.68)

0 0

-(2)[U1
0 G3

where

-5 4.75 0 0 0 0

-2.864 2.612 0 0 -2.864 4.612

-(l) -(2) 0 0 -2 2 0 0
Fl, Fl1,

V 10 0 0 -0.167 0.167 0

0 0 0 0 -5 4.75

0 0 0 0 0 -2
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Now the system is precisely in a form suitable for our design techniques.

The frequency deviations in the two areas and the tie-line power flow

comprise part of the core variables 73" The variables Ixx 2 are the

residual variables associated with each area.

The nineteenth-order game in its original form (6.65) may be

computationally intractable. But in the form (6.68), and allowing only

FPS Structure-Preserving strategies, we need only to solve two sixth-order

optimal control problems, and one seventh-order problem where the two

DMs interact.

For the Pareto-optimal design, the cost functionals are chosen

to be

Ji =  • -iix i +  'Q- 7 + u' R u dt ; i=1i,2 1,
2 o ii 3 1 1 uii

with

Q11 u diag (10, 10, 10, 10, 1, 1)

Q22 = diag (12, 15, 10, 5, 5, 5) J,

Q13"' diag (10, 7, 0, 0, 0, 0, 0)

Q23 ' diag (0, 5, 10, 0, 0, 0, 0, 0)

R - diag (10, 25)

R2  - diag (5, 20) Cov(i- N I.

Case 1: Pareto cost J - J + 3 J
The opia 1 5 2

The optimal gains Fi are first obtained from optimal control

problems (6.58a), (6.59a)

Fl [-0.167 -0.722 0.0132 0.571 0.043 0.13]
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F 2 2  f -0.402 -1.082 0.017 0.528 0.042 0.714].

Then the optimal gains Fi3  Fi are obtained from the coupled

equations (6.58b,c), (6.59b,c) and (6.60),

F1  - [-4.65 -16.28 1.37 12.44 -5.53 0 0]

13

F 23 -[-6.62 -21.35 3.04 0 0 -10.92 4.15]

F31[16.5 0.589 -16.44 -0.653 -0.068 0 0]

32 - -17.08 0.568 16.33 0 0 -8.21 -0.121].

The closed-loop eigenvalues turn out to be -0.2±10.51, -0.214±10.48,

-0.39jJ0.05, -0.52±j0.07, -1.03±11.5, -1.99, -2, -2.09, -2.21, -2.21,

-5.18j.92, -7.09j.96.

The feedback strategies are obtained as,

-0.722 0.167 0.263 -0.591 -0.13 -0.043 -0.571 -0.013
-1 .6 0.716 0.03 -0.03 -1.168 -0.716 0 0

-0.221 0.773 -0.065 Q 18
2

-0.784 -0.028 0.781 28

* rI 0.314 -1.014 -0.144 -1.082 0.402 -0.197 0.519
u2 [ 2x 0.811 -0.027 0.776 -1.168 0.716 -0.057 0.037

-0.714 -0.042 -0.528 -0.017

-1.168 -0.716 0 0
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Case 2: Pareto cost J 0.1 J 1 + 0.9312

The gains F ii do not change and remain the same as before. The

gains F13  F3  are obtained as

F 3  [-6.72 -18.33 4.47 10.92 -6.71 0 0]

*F 3  [-5.91 -19.38 3.72 0 0 -13.08 *3.17]

*F 1 (21.26 4.715 -20.38 -5.05 -2.313 0 01

F f -15.15 0.481 14.77 0 0 -0.514 -0.131]

The closed-loop eigenvalues turn out to be -0.13+jO.56, -0.172, -0.39jOj.05,

-0.52±jO.07, -0.61, -1.03±j1.15, -1.99, -2.0, -2.21, -2.21, -3.12,

-5.18jlj.92, -7.09±jl.96.

The feedback strategies are obtained as,

-0.722 0.167 0.412 -0.716 -0.13 -0.043 -0.571 -0.013
u1= -1.168 0.716 0.068 -0.11 -1.168 -0.716 0 0

-0.395 1.012 -0.111

-0.913 -0.066 0.884 2x x

0.198 0.812 -0.133 -1.082 0.402 -0.156 0.363

028 0.626 -0.012 0.494 -1.168 0.716 -0.032 0.024

-0.714 -0.042 -0.528 -0.017]-1.168 -0.716 0 0

- - -- - -- -- ---
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* Case 3: Pareto cost J - 0.9 J1 + 0. 1 2

Fii remains the same. F£ 3 , F31 are obtained as,

F1 3 - [-2.82 -13.19 1.11 13.73 -3.88 0 0]i13
F2 3 = [-7.75 -25.62 6.51 0 0 -11.21 5.34]

F 3 1 - [13.91 0.366 -14.48 -0.489 -0.041 0 0]

F3 = [-18.19 0.614 17.56 0 0 -1.112 -0.291].

The closed-loop eigenvaues turn out to be -0.1±jO.66, -0.158, -0.39+J0.05,

~~-0.52+J0.07, -0.542, -0.98+.1.52, -1.99, -2.16, -2.21, -2.21, -5.18+jI. 92,

-7.09+j 1.96.

The feedback strategies are obtained as,

-0.722 0.167 0.115 -0.482 -0.13 -0.043 -0.571 -0.013

ui""1. 168  0.716 0.019 -0.023 -1.168 -0.716

-0.106 0.518 -0.06

-0.613 -0.014 0.593 2x8 j
0.523 1.131 -0.393 -1.082 0.402 -0.403 0.626

2 x8 0.928 -0.047 1.022 -1.168 0.716 -0.109 0.042

-0.714 -0.042 -0.528 -0.017
-1.168 -0.716 0 0

. . . ,
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Notice that the strategy of each DM requires a knowledge of the

states of his own area and only the frequency deviation of the other area;

a feature desirable from implementation point-of-view. The time responses

of the tie-line power flow and frequency deviations of the two areas are

plotted in Figures 6.1-6.3. It can be seen that the response of the

frequency deviation corresponding to the area weighted lightly in the

Pareto cost is more oscillatory, which is what one would expect. The

response of the tie-line power flow does not change significantly in the

three cases.

6.7. Conclusions

In this chapter we have examined the role of the observability

structure in multiple decision maker problems. By identifying explicitly

the observability decomposition induced by the observation sets of the

DMs, and by overlapping appropriately the input structure of each DM,

we have shown that the design of Structure-Preserving Feedback Nash

strategies leads to multimodel solutions. Under the FPS information

pattern, the multimodel solutions are shown to admit partial noninteraction

among the DMs. Under the FIS information pattern, Structure-Preserving

strategies involving only linear static output feedback do not exist in

general. When the output matrices split so that there are separate

observation channels for the individually and commonly observable modes,

Structure-Preserving strategies do exist and are again generated from

multimodel solutions. But in this case, the solution is completely

interacting unless certain conditions on the statistics of the state variables

are satisfied. When the output matrices do not split, the FPS Structure-

............................
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Preserving strategies can be synthesized using observers with arbitrarily

fast dynamics. This strategy has the property of being near-equilibrium

7: and asymptotic Nash. When the system is completely observable by each

DM, the observability decomposition can be induced by using the decoupling

controls. But in such situations, a semi-cooperative or cooperative

-framework is desirable.

-Applications to the control of large scale interconnected subsystems

and control of multiarea power systems have been examined; and extensions

* . to many DM problems and cooperative Pareto games have been discussed.

i r2
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CHAPTER 7

CONCLUSIONS

The main thrust of this thesis has been towards analyzing the

- interaction between model simplification and control strategy design in a

mltimodel context. We have studied several realistic situations which

allow the decision makers to use different simplified models of the system.

In Chapters 2-4, we have established the well-posedness of

multimodel generation by 'k-th parameter perturbation' for classes of

linear multiparameter singularly perturbed systems. In Chapter 2 we have

considered deterministic models without the weak-coupling assumption on

the fast subsystems and obtained near-optimal decentralized strategies

from multiple noncausal reduced-order models. In Chapters 3 and 4 we

have considered stochastic version of the model considered in [15,16]

with decentralized observations for the decision makers. In Chapter 3

we developed multimodel solutions for a Nash game with prespecified

finite-dimensional compensator structure for each decision maker. In

Chapter 4 we developed multimodel solutions for team problems with

sampled observations for the decision makers. Both the static team

problem and the dynamic team problem with one-step-delay observation-

sharing pattern have been considered.

In Chapter 5 we have considered the average-cost-per-stage

problem for finite-state Markov chains. The focus was on obtaining near-

optimal incentive policies for controlled Markov models consisting of N

Lweakly-coupled groups of strongly-interacting states. A hierarchical
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algorithm, which allowed for multimodeling on the part of the 'local'

decision makers, has been proposed for computing the near-optimal incentive

policies.

In Chapter 6 we have taken an aggregation-based approach to

multimodeling. Based on input-output considerations, we restructured

the problem in such a way that the optimal solution within a class of

admissible strategies (defined as Structure-Preserving strategies) could

be obtained from multiple reduced-order models. In some cases, the

solution has the desirable feature of partial noninteraction among the

decision makers.

The main contribution of this thesis has been towards strengthening

and extending the multimodeling concept beyond the framework within which

it was originally introduced in [14,15]. We have achieved this by

examining three different approaches to multimodeling. The first approach

(same as in [14,15]) has been to establish the validity of a rational

multimodel generation scheme which is chosen a-priori. The results of

Chapters 2-4 have strengthened this approach by establishing the

'robustness' of multimodel generation by 'k-th parameter perturbation

proposed in [15], to a class of solution concepts and information patterns.

The next two approaches have extended the multimodeling concept beyond the

framework of [14,15]. The second approach, taken in Chapter 5, has been to

develop a numerical algorithm for computing near-optimal policies, which

allows the decision makers to use multiple reduced-order models. The final

approach, taken in Chapter 6, has been to induce multimodel solutions by

4. 1!
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ran appropriate restructuring of the problem and a suitable choice of

admissible strategies. The results of this thesis have revealed the

interplay between model simplification tools like time-scales, weak-

coupling, controllability-observability, and strategy design concepts like

team, Nash and Stackelberg.

There are many possible directions for further research along the

K lines of the results obtained in this thesis. For the models considered

in Chapters 2-4, Stackelberg problems with dynamic information (with/without

memory) for the leader [64] can be analyzed. Also multimodeling possibilities

[4 can be explored for nonlinear deterministic and stochastic models of the type

considered in [67,68]. For Markovian models considered in Chapter 5, it

. "will be rather straightforward to analyze the finite horizon and infinite

C horizon discounted cost problems with state information. A nontrivial

extension would be to problems with decentralized imperfect information for

the decision makers [66]. In the aggregation-based approach of Chapter 6,

we have assumed an 'exact' system decomposition. A possibly more practical

problem would be to consider situations when there is only a 'weak'

decomposition of the system. A perturbational decomposition-aggregation

approach could be developed to obtain near-optimal policies for such

problems.

Possibilities for a multimodel design approach based on

*overlapping decompositions [69] and state vector partitioning [70] can

also be explored.
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APPENDIX A

MATRIX DEFINITIONS APPEARING IN CHAPTER 2

rA0 A1 Al B 1 FQ 0 01
A- AlIc, A I/c 1 A12' 1 j; B 1 11; QI

A/E A je A/ B /J[
L ~~ A2 /c B-- 2 2where 6 ~o; ±#J

A()A -AAAjA W AA -AjA; A
00 00 0jjjj oi oi 0jiii

Bi V; -A jAB1j B Bi) B -A A lB
oi oi 0jjjj oj oj 0i j ji

A -- A jAjjoA i A-AA;A.
iio o i ijii ii ij ii ji

(1) -1 Ai -1
B ~ A ;B Bj-AjA AB

ii iji ju Jo iili

Q(i) -Q A 1 A )'Q AJ7A () R (A'Aj) 'Q1j A-A 11
oj oj Jo jj jjjo

P Alj)Qjk-l~j T() -1'A -1'j A;B

Q A- )' 'AA + A (A; (Aj Bj

CA1A o iij-, ii ii f i Mf

Ci)-1 -1 ( Ci) -1, Q-Si)MPim)
j j jii Qii + m f ii Mi Ij ~l~ j ij i if j
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~~W W(i M W~)Ti W W)~i' M(i) M~i W M W W~iii Mi -Ii Tjij + f Rjj if +if ji Mif

if Pii if if "ii Mjf

TW i -if Iji -Ijf jj Tj j i-f Rj iMf ?jj

Ci) Ci (i) B ii) () 3 iA B A Ai ;-B()-
os oo 0iii i is oi oi i ii

B Ci) BM) -(i)-(i) (i)is B 1 -A0 Ai Bij

QMi -M M 4.C-~l~~ (i) -1
is o±iAi A±0 Q~iAj A~~)

CC) A(i)) M()Ru + (A(i) 1 5
' Bi)

us iii i i i ijjf B())

isiiio i ii ii ii i

(i) M.i) M (A BW M) + Xi (i)Ii)R M i)A)B )

W), M (i), C B(i)Piis iji + BAii B~cii ijMf ij if ;ii i i ii i i

is (1Aiii ii i B ij Qii. A Q~ (Aji B i)

ACi)B +i A(i() Bi~ii) iM(f'i Ri i~ Qi 1
is Ci) i ii )-Ai i 1 +Ai i) ~ C± C)

R()-±~i) ) Bi)' i) (Ci) BC) -M) Ei) M)I i)~i
us ii i ii~ io ~i ii io i 1 CA Bi

D~UU) M A~)ii'~)~i Mi'~i1 ~)Y) + (u(i)Bii) a~i)B W)r is A ii i B i ii ii i j jjB ii i
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APPENDIX B

MATRIX DEFINITIONS APPEARING IN CHAPTER 3

FA0 A, A 1 B [B/ 1B l
A- LAbo/s Al/ci e Aj/e~ B1 [B1] /C LB j
L 20/ 2 22 21 2 A22 2 -A L .22 2

: L 1
10

L"LI/

C 0 0
cL " [ Lo 0] 0 1 C 1  0

01
[ 0 e 2

202 -C
" 0 1_

S, -BiR 1i' - BR BS B R- S B S B Rj Bj
-oi oi . o 0, oi R i iL si

-- block diag ; "1,0 r- block diag,,

1" block d2ag[Qo,Q 1 ,O] ; block diag(Q02,0,Q21

V - block" diag[VoiVi] - block diag(W,Vl,V2 ]

ii

0 -2

- block diag[V0 ~ 1  T ~ - -C 1 C 1

ij0'i i l i i
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ApS K-S2 SlK S2F -F-2K 2 F -~ Sf22I B -L E & LI
A - - AK 1B- - A B

-1--1A~~ ~ CA A 7

L-L -/e.A A 1 L -FA A'l c -c CA-0 0 31 01 11 1 2 0 2 2 2L2  is ii

D z 7,' is - i s aL

is /- ijiji i u

L-A7 1 L is -V+ Lin

£i Qoi ii o i i is (A i

-1R~( 5 A~ -A A L~j

A--B ls RS-B Q'AAA R 5Q 2sR2s2s ' A 0 aji

A - -B RJ71Q ;B 5 1
is s is s is is i

- Z B R1SB' Ks BiRs(B K +Q' B <'B -1+
3 iiiiss l Isi s is 2s 2s 2s 2s S

F -A-F -B R72SB' K F -G C B R72i (B' K4Q
s is is 2s s s2s isG isils 29 s 2sK2s2~s)

A F-B LSB'SK B R j1('K +Q' ) F-GC
Ll2s 2s is 1s isi '5( ss2s 2sC2s

BK s Lo Gl s 1 i s E1W;

-L 0 G 5  -w E'

Is2 2 2L ~
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F 00 - F01 0o)  F 2 () G jO(C)
1 F1~ FG

F, 9 .F8)£ 10i)~ ~2~~ -ro- G 1 (C)

1 (')(6) '-2F(L)(£) .F (')(C) 1 C
,G',:. L'92 20 6 2 21 £ 2 22 '~r212:

' -" b l o k d a . ( 1 ) _ .( 1 ) , ( 1 ) ' ( 2 ) _ ( 2 ) ( 2 ) '
A0  block diaS[F(1-S, 1 , K S~*K . FOOSKoo0  022 .A0" 00 0 00 0 °01 '00 0 "02"0 "S02"0

A - bloc rdia ( 1 )- s (l)- K( 1 ) F(2)_"C S K(2) V1 2K)]
block 01 1 0101 ,11 01 1 0201 c 2 0

A --block diag[F K ) S K K
02 02 2S0 1K0 2  -S 0 1 Ki 2 - F02 2 02 02 02 22

A 1 0 - block diag(F -' K'1,-. KK1 ) F, 2 )]
10 10 ""0100 11 01 ' 10

• A1 block (1) 1 .. 1)S K(1) K( (2)
All b diag[F 1 1  01 01 11,1 ' F11

A1 2  block diagr( 12 \K

12 " CF" - 0102 -- 1 s 12
11 

111111
20 20 20 -02-00 "22"0

g•F(l) F( 2 ) _ .(2)1 (2)]
~~block diagF ~ 20720

_r' 'I
A2 1  block diag[F2] ' , 21 " g220201 2 -" S222212
A2 2 -block diag[F22, 22 20202

"G:L block dias[G li, G2 1.]; 1i,0,1,2.

Evi i j'

2<i

€.-'zj

-I

'L4
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APPENDIX C

PROOF OF PROPOSITION 4.1

The unique optimal solution to the static team problem defined by

(4.11a), (4.14) and (4.12) is given by (36],

-u*(t) - Eiy -c i B-2ss(t); 1- 1,2. (cl)

S S(t) is the nonnegative definite solution of the Riccati equation

i+A'S+SA-S(B B +B B;)S+Q - 0; S(tf)- Qf (C2)

i(t) -(A-B IB 1'S-B 2B ZS)iX) 0~ 0- (3

P, MB' '~i £z]- B±i' ,. ij- 1,2; i~j. (C4)
i. j

" Si(t) is the nonnegative definite solution of the Riccati equation

Si M A'S i+SA-SiB B$i + Q - 0; Si(tif)Qf; i-1,2 (C5)

and Pi= A-BB'S ]Pi+ BBIEKi Sil]; Pi (to) 0 ; i~j -1,2; i#J (C6)L0S ij 1,2;ij C

L- AL +B BS [Pi-LjZiCi-BB'KiCi; Li(to)"; i,J,2; i~j (C7)

-'%. - B B 'i SBBS(f EI + S9 B j5C
.. i(tf ) - 0; i,j - 1,2; i~j (C8).

Z- E 0 Ci(Ci±o Cj+ ; i- 1,2. (C9)

The minimum value J* is given by
tf

J* J(u*,u*) - ioS(0)o +tr(Z S(O))+tr(f S(t)FF'dt)+J (ClO)1'2 0 0 0o;;' to

S." "where t f

" tr f Z (A i) A()Z + .) (1)R +A 2)'A(2) R +SB B' SW)]dt (Cl1)

0

....................... ....... .......
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.:,A(i)(t) = PC-B'S(L +L )+3B'SO(t,t); i,j-1,2; i#j (C12)
0 ii ± 0 i

A ) W P'+ BISV; i=12 (C3)

A~j )(t) - B'SV " ij-1,2; i#j (C14)

r AV,+B Y i[ i-i.zi BiBiyi; Vi(to )-=0 i,j =1,2;. i#j (C15)

W - AW+WA' + FF'; W(to ) -0 (C16)
0

....":: - At; 0(topt o  1 . (C17)

0

To prove (a) we express S(t), S1 (t), Li(t), K Ct), Pi(t) in partitioned form as

S 0  £1S01  £2S02  00 £101 ¢2 02 1
SWt e S S'-. £ S W£ SCti £S 0  £11 1 2 12S

101 C20 11 121]
"2St2 /£l 2S12  M2 22  202)' M

2 02t) 1 1(i) 02 1 2 12: 2 22

60 O,11 12 ' 0 )
(t)i L Li W ei ()2K~i (t (iM.

i."20 "21 22 £22 . 2.
- 10 1 21

Substituting these forms in (C4"), expanding out and neglecting 0(I e) terms, we

obtain

; ~ ~~ ~~ = . ()+= (i)', Mi . ('Wr .L(JE )+'(i), (1) -(J)z .(J)zSi (OiO0 +BiiSOi )+ B -L00 is 01 if Biii (i "LiO is"-ii if")]

-B KM B KM£ (C18)
0- 0 11 ±

Substituting the partitioned forms in (C5) and (C6)-(C8) and taking the

limit as 0 get,



167

00 is +01.1

01 - S18 B01 BiL Sif A11 + 0(1.1) A1 - B j B jSj

SM + 011)

* ~ ~ (j)

L (1 0) -1 Nell

0S 01 +I ell I1

LSjf [G 1 Ao BKBi8  + 01,)

A.. 1 ~ ~ Al. -1A] A-

M [GA 1 B B~ + A 1 3 1 (A 1 BS'

SuulingCif) iinbo (C)n maiPig +em we otain

M K~ ~S~Yf(~ 0 )rf+0Igi C
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Next,consider the second term of u (t) from (Cl):

SBi S x (t) (Boi S0 0 + Bi Soi) 10 (t) + Bi Sii li(t) (C21)

Substituting the partitioned form of S(t) in (C2) and taking the limit as

'II " 0 we obtain

S - ss + 0

=-. A-.S3

.S B BSi 5if Au + (C22)

sii- Sif + OKe:ll); Sij - o(11ll)

:.--:' Using (C22) in (C3) and taking the limit as I 0ll - 0, it can be shown that

fi(t) - Jif(t) + All Bij (B0u Soo + Bji S~i) 0 s(t) + 0(1jcl) (C24)

Substituting (C23),(C24) in (C21) and rearranging terms we obtain

.BB S x (t ) + B s Bi Sif Jif(t) + 0 ql 11l (C25)

Therefore, (C25) and (C20) imply

.u i ) - = i ( ) + o 1 l l l ) ; 1 -1 2 ; t E ( t~ z 1 t C ( o t f ]

The reason the above approximation is valid only on a subinterval is because

we have neglected the boundary-layer terms.

To prove (b), we need to obtain the limiting expressions for the

variables Vi , W and consequently for A Oi, Ai) and,%(J)

0 ,-
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U~ Fv )w 00  W01  W02
Let Vi  V, and W 'W~ W1 1  W1 2

2 W02  W12  W22

Substituting the partitioned forms of Vi and W in (C15),(Cl6) and taking

the limit as ,0 we obtain

vO i vs + 0Oql Cl1

- ++o lqll)r~~~ v1 ~ ftt) - $i,(t,to)] Ef + (G1 - A1 B- B1B' S V

+0

P v(i) " (t to) +  ql C1 (C26)

W 00  mW +01Kell
~WO Ws o+ 0 l

Wii "wi + 0q1C11)

Wo -w -o il)

Substituting (C19), (C20), (C22) and (C26) in (C12)-(C17) and manipulating

terms results in

[. AOi) = Ai) + (i)+O(l)
Os +AOf

A I) -A + AM + 0(II:II) (C27)i is if

A (J )  A(J ) + O(iSH).

is

Lsing these limiting values in (CIO) and (CII) and simplifying the terms gives

;s the desired result
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j* +j OO

1 if 2 f +0

Neglecting the boundary-layer terms does not affect the approximation in the

cost because their contribution to the cost is O0cl).

4 A
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APPENDIX D

MODEL VARIABLES OF THE POWER EXAMPLE OF CHAPTER 6

' l" =2 valve position displacement in first thermal unit of area 1 and 2.

o -x x power output displacement of HP turbine in first thermal unit of area

1 and 2.

x 13,x14 power output displacement of IP turbine in first thermal unit of area

K *.'i 1 and 2.

- x = power output displacement of LP turbine in first thermal unit of area

r] 1 and 2.

x5 3x1 6 - valve position displacement in second thermal unit of area 1 and 2.

, - power output displacement of HP turbine in second thermal unit of area, .6 x6,17

p 1 and 2.

Sx18 power output displacement of IP turbine in second thermal unit of area

l and 2.

X - power output displacement of LP turbine in second thermal unit of area

i and 2.

x9,x 11 frequency deviation of area 1 and 2.

x - tie-line power flow connecting area I and 2.
;10

+ (1) (2)
uMU (2). set-point adjustment of first thermal unit in area 1 and 2.

i. (1 ,(2).
2) 2 )set-point adjustment of second thermal unit in area 1 and 2.

S(1) (2). frequency deviation of area 1 and 2.
. (1) 2)

(1) (2). tie-line power flow of area I and 2.KY2 l
L -'
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